A practical introduction to the use of the finite-element method and variational methods to solve engineering problems about beams, bars, torsion, and plane elasticity. Includes a concise section on composite-material laminated plates and shells. Contains numerous examples, exercises, problems, and references.
A practical introduction to the use of the finite-element method and variational methods to solve engineering problems about beams, bars, torsion, and...
This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars...
This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathe...
Composite materials are increasingly used in aerospace, underwater, and automotive structures. To take advantage of the full potential of composite materials, structural analysts and designers must have accurate mathematical models and design methods at their disposal. The objective of this monograph is to present the laminated plate theories and their finite element models to study the deformation, strength and failure of composite structures. Emphasis is placed on engineering aspects, such as the analytical descriptions, effective analysis tools, modeling of physical features, and...
Composite materials are increasingly used in aerospace, underwater, and automotive structures. To take advantage of the full potential of composite ma...
The use of composite materials in engineering structures continues to increase dramatically, and there have been equally significant advances in modeling for general and composite materials and structures in particular. To reflect these developments, renowned author, educator, and researcher J.N. Reddy created an enhanced second edition of his standard-setting Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. This edition includes:
A chapter dedicated to the theory and analysis of laminated shells
Discussions addressing...
The use of composite materials in engineering structures continues to increase dramatically, and there have been equally significant advances in model...
The study of buckling loads, which often hinges on numerical methods, is key in designing structural elements. But the need for analytical solutions in addition to numerical methods is what drove the creation of Exact Solutions for Buckling of Structural Members. It allows readers to assess the reliability and accuracy of solutions obtained by numerical methods. The author has attempted to gather and present as many exact buckling solutions as possible in one single volume for engineers and researchers. These buckling solutions of columns, beams, arches, ring plates, and shells should serve...
The study of buckling loads, which often hinges on numerical methods, is key in designing structural elements. But the need for analytical solutions i...
< P> Because plates and shells are common structural elements in aerospace, automotive, and civil engineering structures, engineers must understand the behavior of such structures through the study of theory and analysis. Compiling this information into a single volume, Theory and Analysis of Elastic Plates and Shells, Second Edition presents a complete, up-to-date, and unified treatment of classical and shear deformation plates and shells, from the basic derivation of theories to analytical and numerical solutions. Revised and updated, this second edition incorporates new information...
< P> Because plates and shells are common structural elements in aerospace, automotive, and civil engineering structures, engineers must understand th...
Composite materials are increasingly used in aerospace, underwater, and automotive structures. They provide unique advantages over their metallic counterparts, but also create complex challenges to analysts and designers. Practical Analysis of Composite Laminates presents a summary of the equations governing composite laminates and provides practical methods for analyzing most common types of composite structural elements. Experimental results for several types of structures are included, and theoretical and experimental correlations are discussed. The last chapter is devoted to practical...
Composite materials are increasingly used in aerospace, underwater, and automotive structures. They provide unique advantages over their metallic coun...
Everyone involved with the mechanics of composite materials and structures must have come across the works of Dr. N.J. Pagano in their research. His research papers are among the most referenced of all existing literature in the field of mechanics of composite materials. This monograph makes available, in one volume, all Dr. Pagano's major technical papers. Most of the papers included in this volume have been published in the open literature, but there are a few exceptions -- a few key, unpublished reports have been included for continuity. The topics are: some basic studies of...
Everyone involved with the mechanics of composite materials and structures must have come across the works of Dr. N.J. Pagano in their research. His r...
Most books on the theory and analysis of beams and plates deal with the classical (Euler-Bernoulli/Kirchoff) theories but few include shear deformation theories in detail. The classical beam/plate theory is not adequate in providing accurate bending, buckling, and vibration results when the thickness-to-length ratio of the beam/plate is relatively large. This is because the effect of transverse shear strains, neglected in the classical theory, becomes significant in deep beams and thick plates. This book illustrates how shear deformation theories provide accurate solutions compared to the...
Most books on the theory and analysis of beams and plates deal with the classical (Euler-Bernoulli/Kirchoff) theories but few include shear deformatio...
This short monograph presents an analysis and design methodology for shape memory alloy (SMA) components such as wires, beams, and springs for different applications. The solid-solid, diffusionless phase transformations in thermally responsive SMA allows them to demonstrate unique characteristics like superelasticity and shape memory effects. The combined sensing and actuating capabilities of such materials allows them to provide a system level response by combining multiple functions in a single material system. In SMA, the combined mechanical and thermal loading effects influence the...
This short monograph presents an analysis and design methodology for shape memory alloy (SMA) components such as wires, beams, and springs for diff...