This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the...
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, w...
This book presents the definitive account of the applications of this algebra to the surgery classification of topological manifolds. The central result is the identification of a manifold structure in the homotopy type of a Poincare duality space with a local quadratic structure in the chain homotopy type of the universal cover. The difference between the homotopy types of manifolds and Poincare duality spaces is identified with the fibre of the algebraic L-theory assembly map, which passes from local to global quadratic duality structures on chain complexes. The algebraic L-theory assembly...
This book presents the definitive account of the applications of this algebra to the surgery classification of topological manifolds. The central resu...
This is the first treatment in book form of the applications of the lower K- and L-groups (which are the components of the Grothendieck groups of modules and quadratic forms over polynomial extension rings) to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. The author uses only elementary constructions and gives a full algebraic account of the groups involved; of particular note is an algebraic treatment of geometric transversality for maps to the circle.
This is the first treatment in book form of the applications of the lower K- and L-groups (which are the components of the Grothendieck groups of modu...
The Novikov Conjecture is the single most important unsolved problem in the topology of high-dimensional non-simply connected manifolds. These two volumes are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) in September, 1993, on the subject of Novikov Conjectures, Index Theorems and Rigidity'. They are intended to give a snapshot of the status of work on the Novikov Conjecture and related topics from many points of view: geometric topology, homotopy theory, algebra, geometry, analysis.
The Novikov Conjecture is the single most important unsolved problem in the topology of high-dimensional non-simply connected manifolds. These two vol...
The Novikov conjecture is the single most important unsolved problem in the topology of high-dimensional non-simply connected manifolds. These two volumes give a snapshot of the status of work on the Novikov conjecture and related topics from many points of view: geometric topology, homotopy theory, algebra, geometry, and analysis. Volume 1 contains a detailed historical survey and bibliography of the Novikov conjecture and of related subsequent developments, including an annotated reprint (both in the original Russian and in English translation) of Novikov's original 1970 statement of his...
The Novikov conjecture is the single most important unsolved problem in the topology of high-dimensional non-simply connected manifolds. These two vol...
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P.M. Cohn) it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry.This volume consists of 9 articles on noncommutative localization in algebra and topology. The aricles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book...
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms ...
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishments in that time, which have led to enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source that surveys surgery theory and its applications. Indeed, no one person could write such a survey.
The sixtieth birthday of C. T. C. Wall, one of the leaders of the founding generation of surgery theory, provided an opportunity to rectify the situation...
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishme...
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. The sixtieth birthday (on December 14, 1996) of C.T.C. Wall, a leading member of the subject's founding generation, led the editors of this volume to reflect on the extraordinary accomplishments of surgery theory as well as its current enormously varied interactions with algebra, analysis, and geometry.
Workers in many of these areas have often lamented the lack of a single source surveying surgery theory and its applications. Because no one person could write such a survey, the...
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. The sixtieth birthday (on December 14, 1996) of...