The study of vibration in physical systems is central to almost all fields in physics and engineering. This work, originally published in two volumes, examines the classical aspects in Part I and the quantum oscillator in Part II. The classical linear vibrator is treated first and the underlying unity of all linear oscillations in electrical, mechanical and acoustic systems is emphasized. The treatment of nonlinear vibrations, a field with which engineers and physicists are generally less familiar, is then examined. Part II then concentrates on quantum systems, looking at the vibrations in...
The study of vibration in physical systems is central to almost all fields in physics and engineering. This work, originally published in two volumes,...
The laws of thermodynamics are amongst the most assured and wide-ranging of all scientific laws. They do not pretend to explain any observation in molecular terms but, by showing the necessary relationships between different physical properties, they reduce otherwise disconnected results to compact order, and predict new effects. This classic title, first published in 1957, is a systematic exposition of principles, with examples of applications, especially to changes of places and the conditions for stability. In all this entropy is a key concept.
The laws of thermodynamics are amongst the most assured and wide-ranging of all scientific laws. They do not pretend to explain any observation in mol...