This book presents a development of invariant manifold theory for a spe- cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger equation. The main results fall into two parts. The first part is concerned with the persistence and smoothness of locally invariant manifolds. The sec- ond part is concerned with fibrations of the stable and unstable manifolds of inflowing and overflowing invariant manifolds. The central technique for proving these results is Hadamard's graph transform method generalized to an infinite-dimensional setting. However, our setting is somewhat...
This book presents a development of invariant manifold theory for a spe- cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger eq...
This book presents a development of invariant manifold theory for a spe- cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger equation. The main results fall into two parts. The first part is concerned with the persistence and smoothness of locally invariant manifolds. The sec- ond part is concerned with fibrations of the stable and unstable manifolds of inflowing and overflowing invariant manifolds. The central technique for proving these results is Hadamard's graph transform method generalized to an infinite-dimensional setting. However, our setting is somewhat...
This book presents a development of invariant manifold theory for a spe- cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger eq...