We are now on the verge of viewing effector molecules and other regulatory sites as therapeutic targets for the amelioration of human and animal disease. The recognition, for example, that mutant proteins are frequently misrouted molecules, rather than functionally defective ones, changes our approach to "inborn errors of metabolism" and offers new approaches for pharmacological discovery, based on rescue of receptors, ion channels and enzymes with pharmacoperones. Ion channels, regulators of G-protein signaling and enzymes engaged in regulation, now present opportunities for drug...
We are now on the verge of viewing effector molecules and other regulatory sites as therapeutic targets for the amelioration of human and animal di...
In mammals, a robust physiologic system acts to maintain relative constancy of weight. A key element of this system is leptin. The nature of this "brain-somatic" cross talk is as yet poorly understood, but it is likely to have important implications for the pathophysiology and treatment of obesity, diabetes and other metabolic disorders.
In mammals, a robust physiologic system acts to maintain relative constancy of weight. A key element of this system is leptin. The nature of this "...
We are now on the verge of viewing effector molecules and other regulatory sites as therapeutic targets for the amelioration of human and animal disease. The recognition, for example, that mutant proteins are frequently misrouted molecules, rather than functionally defective ones, changes our approach to "inborn errors of metabolism" and offers new approaches for pharmacological discovery, based on rescue of receptors, ion channels and enzymes with pharmacoperones. Ion channels, regulators of G-protein signaling and enzymes engaged in regulation, now present opportunities for drug...
We are now on the verge of viewing effector molecules and other regulatory sites as therapeutic targets for the amelioration of human and animal di...
In mammals, a robust physiologic system acts to maintain relative constancy of weight. A key element of this system is leptin. The nature of this "brain-somatic" cross talk is as yet poorly understood, but it is likely to have important implications for the pathophysiology and treatment of obesity, diabetes and other metabolic disorders.
In mammals, a robust physiologic system acts to maintain relative constancy of weight. A key element of this system is leptin. The nature of this "...