The reader is assumed to know the elementary part of complex funCtion theory, general topology, integration, and linear spaces. All the needed information is contained in a usual first-year graduate course on analysis. These prerequisites are modest but essential. To be sure there is a big gap between learning the Banach-Steinhaus theorem, for example, and applying it to a real problem. Filling that gap is one of the objectives of this book. It is a natural objective, because integration theory and functional analysis to a great extent developed in response to the problems of Fourier series ...
The reader is assumed to know the elementary part of complex funCtion theory, general topology, integration, and linear spaces. All the needed informa...