Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
This thematic volume is on the topic of "Field-emission Source Mechanisms" and is authored by Kevin...
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical a...
The examination of structure at the microscopic scale, between micrometers and angstrom units, has changed dramatically in recent decades. Many new types of microscopy have emerged, notably the many scanning-probe designs, some of which also allow manipulation of atoms to form wanted structures, while others now permit direct observation of moving proteins in liquids. The traditional electron microscope is being revolutionized by the arrival of aberration correctors and monochromators, which bring the resolution below the Angstrom and electron-volt level. The "laboratory in a microscope"...
The examination of structure at the microscopic scale, between micrometers and angstrom units, has changed dramatically in recent decades. Many new...
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. An important feature of these Advances is that the subjects are written in such a way that they can...
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical a...
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
* Updated with contributions from leading international scholars and industry...
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances i...
Advances in Imaging & Electron Physics merges two long-running serials--Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Advances in Imaging & Electron Physics merges two long-running serials--Advances in Electronics & Electron Physics and Advances in Op...
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical a...
The invention of the electron microscope more than 70 years ago made it possible to visualize a new world, far smaller than anything that could be seen with the traditional microscope. The biologist could study viruses and the components of cells, the materials scientist could study the structure of metals and alloys and many other substances, and especially their defects. But even the electron microscope had limits, and truly atomic structure was still too small to be observed directly. The so-called "limit of resolution" of the microscope was well understood, but attempts to use the...
The invention of the electron microscope more than 70 years ago made it possible to visualize a new world, far smaller than anything that could be see...
Advances in Imaging & Electron Physics merges two long-running serials--Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Advances in Imaging & Electron Physics merges two long-running serials--Advances in Electronics & Electron Physics and Advances in Op...
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances i...
In this volume, the authors extend the calculus of finite differences to Dirac's equation. They obtain solutions for particles with negative mass that are completely equivalent to the solutions with positive mass. In addition, they obtain solutions for nuclear distances of the order of 10-13m and less rather than for the usual atomic distances. They report a number of other deviations from the differential theory, for instance they found a slight deviation in the eigenvalues of an electron in a Coulomb field, similar to the Lamb shift. In two sections some surprising results are...
In this volume, the authors extend the calculus of finite differences to Dirac's equation. They obtain solutions for particles with negative mass that...