Symplectic geometry is very useful for formulating clearly and concisely problems in classical physics and also for understanding the link between classical problems and their quantum counterparts. It is thus a subject of interest to both mathematicians and physicists, though they have approached the subject from different viewpoints. This is the first book that attempts to reconcile these approaches. The authors use the uncluttered, coordinate-free approach to symplectic geometry and classical mechanics that has been developed by mathematicians over the course of the past thirty years, but...
Symplectic geometry is very useful for formulating clearly and concisely problems in classical physics and also for understanding the link between cla...
Victor W. Guillemin Shlomo Sternberg Eugene Lerman
Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics. The subject of this book is the multiplicity diagrams associated with the classical groups U(n), O(n), etc. It presents such topics as asymptotic distributions of multiplicities, hierarchical patterns in multiplicity diagrams, lacunae, and the multiplicity diagrams of the rank 2 and rank 3 groups. The authors take a novel approach, using the techniques of symplectic geometry. The book develops in detail some themes which were touched on in the highly successful Symplectic...
Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics. The subject of this book is th...
Based on a seminar sponsored by the Institute for Advanced Study in 1977-1978, this set of papers introduces micro-local analysis concisely and clearly to mathematicians with an analytical background. The papers treat the theory of microfunctions and applications such as boundary values of elliptic partial differential equations, propagation of singularities in the vicinity of degenerate characteristics, holonomic systems, Feynman integrals from the hyperfunction point of view, and harmonic analysis on Lie groups.
Based on a seminar sponsored by the Institute for Advanced Study in 1977-1978, this set of papers introduces micro-local analysis concisely and cle...
The theory of Toeplitz operators has come to resemble more and more in recent years the classical theory of pseudodifferential operators. For instance, Toeplitz operators possess a symbolic calculus analogous to the usual symbolic calculus, and by symbolic means one can construct parametrices for Toeplitz operators and create new Toeplitz operators out of old ones by functional operations.
If P is a self-adjoint pseudodifferential operator on a compact manifold with an elliptic symbol that is of order greater than zero, then it has a discrete spectrum. Also, it is well known...
The theory of Toeplitz operators has come to resemble more and more in recent years the classical theory of pseudodifferential operators. For insta...
The subject matter of this work is an area of Lorentzian geometry which has not been heretofore much investigated: Do there exist Lorentzian manifolds all of whose light-like geodesics are periodic? A surprising fact is that such manifolds exist in abundance in (2 + 1)-dimensions (though in higher dimensions they are quite rare). This book is concerned with the deformation theory of M2,1 (which furnishes almost all the known examples of these objects). It also has a section describing conformal invariants of these objects, the most interesting being the determinant of a two dimensional...
The subject matter of this work is an area of Lorentzian geometry which has not been heretofore much investigated: Do there exist Lorentzian manifo...
" the text is user friendly to the topics it considers and should be very accessible Instructors and students of statistical measure theoretic courses will appreciate the numerous informative exercises; helpful hints or solution outlines are given with many of the problems. All in all, the text should make a useful reference for professionals and students." The Journal of the American Statistical Association"
" the text is user friendly to the topics it considers and should be very accessible Instructors and students of statistical measure theoretic cour...
Equivariant cohomology on smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Bruning and V.W. Guillemin. The point of departure are two relatively short but very remarkable papers be Henry Cartan, published in 1950 in the Proceedings of the "Colloque de Topologie." These papers are reproduced here, together with a modern introduction to the subject, written by two of the leading experts in the field. This "introduction" comes as a textbook of its own, though, presenting the first full treatment of equivariant cohomology in the de Rahm setting....
Equivariant cohomology on smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Bruning and V.W. Guillemi...
The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytope, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. For instance, the first chapter is largely devoted to the Delzant theorem, which says that there is a one-one correspondence between certain types of moment polytopes and certain types of...
The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest...
What is the true mark of inspiration? Ideally it may mean the originality, freshness and enthusiasm of a new breakthrough in mathematical thought. The reader will feel this inspiration in all four seminal papers by Duistermaat, Guillemin and Hormander presented here for the first time ever in one volume. However, as time goes by, the price researchers have to pay is to sacrifice simplicity for the sake of a higher degree of abstraction. Thus the original idea will only be a foundation on which more and more abstract theories are being built. It is the unique feature of this book to combine...
What is the true mark of inspiration? Ideally it may mean the originality, freshness and enthusiasm of a new breakthrough in mathematical thought. The...
Victor W. Guillemin Shlomo Sternberg Jochen Bruning
Equivariant cohomology on smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Bruning and V.W. Guillemin. The point of departure are two relatively short but very remarkable papers be Henry Cartan, published in 1950 in the Proceedings of the "Colloque de Topologie." These papers are reproduced here, together with a modern introduction to the subject, written by two of the leading experts in the field. This "introduction" comes as a textbook of its own, though, presenting the first full treatment of equivariant cohomology in the de Rahm setting....
Equivariant cohomology on smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Bruning and V.W. Guillemi...