This is an accessible introduction to some of the fundamental connections among differential geometry, Lie groups, and integrable Hamiltonian systems. The text demonstrates how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists as well.
This is an accessible introduction to some of the fundamental connections among differential geometry, Lie groups, and integrable Hamiltonian systems....
This is an accessible introduction to some of the fundamental connections among differential geometry, Lie groups, and integrable Hamiltonian systems. The text demonstrates how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists as well.
This is an accessible introduction to some of the fundamental connections among differential geometry, Lie groups, and integrable Hamiltonian systems....
Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs...
Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable syste...
The articles in this volume provide a panoramic view of the role of geometry in integrable systems, firmly rooted in surface theory but currently branching out in all directions. The longer articles by Bobenko (the Bonnet problem), Dorfmeister (the generalized Weierstrass representation), Joyce (special Lagrangian 3-folds) and Terng (geometry of soliton equations) are substantial surveys of several aspects of the subject. The shorter ones indicate more briefly how the classical ideas have spread throughout differential geometry, symplectic geometry, algebraic geometry, and theoretical...
The articles in this volume provide a panoramic view of the role of geometry in integrable systems, firmly rooted in surface theory but currently bran...