There is now a large body of theory concerning algebraic varieties over finite fields, and many conjectures in this area are of great interest to researchers in number theory and algebraic geometry. This book deals with the arithmetic of diagonal hypersurfaces over finite fields, with special focus on the Tate conjecture and the Lichtenbaum-Milne formula for the central value of the L-function. It combines theoretical and numerical work, and includes tables of Picard numbers. Although this book is aimed at experts, the authors have included some background material to help nonspecialists gain...
There is now a large body of theory concerning algebraic varieties over finite fields, and many conjectures in this area are of great interest to rese...
The central topic of this research monograph is the relation between p-adic modular forms and p-adic Galois representations, and in particular the theory of deformations of Galois representations recently introduced by Mazur. The classical theory of modular forms is assumed known to the reader, but the p-adic theory is reviewed in detail, with ample intuitive and heuristic discussion, so that the book will serve as a convenient point of entry to research in that area. The results on the U operator and on Galois representations are new, and will be of interest even to the experts. A list of...
The central topic of this research monograph is the relation between p-adic modular forms and p-adic Galois representations, and in particular the the...