This work provides a unified theory that addresses the important problem of the origin and maintenance of genetic variation in natural populations. With modern molecular techniques, variation is found in all species, sometimes at astonishingly high levels. Yet, despite these observations, the forces that maintain variation within and between species have been difficult subjects of study. Because they act very weakly and operate over vast time scales, scientists must rely on indirect inferences and speculative mathematical models. However, despite these obstacles, many advances have been made....
This work provides a unified theory that addresses the important problem of the origin and maintenance of genetic variation in natural populations. Wi...
This concise introduction offers students and researchers an overview of the discipline that connects genetics and evolution. Addressing the theories behind population genetics and relevant empirical evidence, John Gillespie discusses genetic drift, natural selection, nonrandom mating, quantitative genetics, and the evolutionary advantage of sex. First published to wide acclaim in 1998, this brilliant primer has been updated to include new sections on molecular evolution, genetic drift, genetic load, the stationary distribution, and two-locus dynamics. This book is indispensable for...
This concise introduction offers students and researchers an overview of the discipline that connects genetics and evolution. Addressing the theori...