The focus of this book is geometric properties of general sets and measures in Euclidean spaces. Applications of this theory include fractal-type objects, such as strange attractors for dynamical systems, and those fractals used as models in the sciences. The author provides a firm and unified foundation for the subject and develops all the main tools used in its study, such as covering theorems, Hausdorff measures and their relations to Riesz capacities and Fourier transforms. The last third of the book is devoted to the Besicovitch-Federer theory of rectifiable sets, which form in a sense...
The focus of this book is geometric properties of general sets and measures in Euclidean spaces. Applications of this theory include fractal-type obje...
This book provides a comprehensive account of a key, perhaps the most important, theory that forms the basis of Taylor-Wiles proof of Fermat's last theorem. Hida begins with an overview of the theory of automorphic forms on linear algebraic groups and then covers the basic theory and recent results on elliptic modular forms, including a substantial simplification of the Taylor-Wiles proof by Fujiwara and Diamond. He offers a detailed exposition of the representation theory of profinite groups (including deformation theory), as well as the Euler characteristic formulas of Galois cohomology...
This book provides a comprehensive account of a key, perhaps the most important, theory that forms the basis of Taylor-Wiles proof of Fermat's last th...
This book, devoted to an invariant multidimensional process of recovering a function from its derivative, considers additive functions defined on the family of all bounded BV sets that are continuous with respect to a suitable topology. The main applications are related to the Gauss-Green and Stokes theorems. The book contains complete and detailed proofs of all new results, and of many known results for which the references are not easily available. It will provide valuable information to research mathematicians and advanced graduate students interested in geometric integration and related...
This book, devoted to an invariant multidimensional process of recovering a function from its derivative, considers additive functions defined on the ...
This book covers analysis on fractals, a developing area of mathematics that focuses on the dynamical aspects of fractals, such as heat diffusion on fractals and the vibration of a material with fractal structure. The book provides a self-contained introduction to the subject, starting from the basic geometry of self-similar sets and going on to discuss recent results, including the properties of eigenvalues and eigenfunctions of the Laplacians, and the asymptotical behaviors of heat kernels on self-similar sets. Requiring only a basic knowledge of advanced analysis, general topology and...
This book covers analysis on fractals, a developing area of mathematics that focuses on the dynamical aspects of fractals, such as heat diffusion on f...
This is a new edition of the now classic text. The already extensive treatment given in the first edition has been heavily revised by the author. The addition of two new sections, numerous new results and 150 references means that this represents an up-to-date and comprehensive account of random graph theory. The theory estimates the number of graphs of a given degree that exhibit certain properties. It not only has numerous combinatorial applications, but also serves as a model for the probabilistic treatment of more complicated random structures. This book, written by an acknowledged expert...
This is a new edition of the now classic text. The already extensive treatment given in the first edition has been heavily revised by the author. The ...
This monograph gives a thorough exposition of Floer's seminal work during the 1980s from a contemporary viewpoint. The material contained here was developed with specific applications in mind. However, it has now become clear that the techniques used are important for many current areas of research. An important example would be symplectic theory and gluing problems for self-dual metrics and other metrics with special holonomy. The author writes with the big picture constantly in mind. As well as a review of the current state of knowledge, there are sections on the likely direction of future...
This monograph gives a thorough exposition of Floer's seminal work during the 1980s from a contemporary viewpoint. The material contained here was dev...
This book is a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier-Mukai transform. Alexander Polishchuk starts by discussing the classical theory of theta functions from the viewpoint of the representation theory of the Heisenberg group (in which the usual Fourier transform plays the prominent role). He then shows that in the algebraic approach to this theory (originally due to Mumford) the Fourier-Mukai transform can often be used to simplify the existing proofs or to provide completely...
This book is a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systema...
This is a new edition of the now classic text. The already extensive treatment given in the first edition has been heavily revised by the author. The addition of two new sections, numerous new results and 150 references means that this represents an up-to-date and comprehensive account of random graph theory. The theory estimates the number of graphs of a given degree that exhibit certain properties. It not only has numerous combinatorial applications, but also serves as a model for the probabilistic treatment of more complicated random structures. This book, written by an acknowledged expert...
This is a new edition of the now classic text. The already extensive treatment given in the first edition has been heavily revised by the author. The ...
This classic textbook, now reissued, offers a clear exposition of modern probability theory and of the interplay between the properties of metric spaces and probability measures. The new edition has been made even more self-contained than before; it now includes a foundation of the real number system and the Stone-Weierstrass theorem on uniform approximation in algebras of functions. Several other sections have been revised and improved, and the comprehensive historical notes have been further amplified. A number of new exercises have been added, together with hints for solution.
This classic textbook, now reissued, offers a clear exposition of modern probability theory and of the interplay between the properties of metric spac...
This accessible introduction to harmonic map theory and its analytical aspects, covers recent developments in the regularity theory of weakly harmonic maps. The book begins by introducing these concepts, stressing the interplay between geometry, the role of symmetries and weak solutions. It then presents a guided tour into the theory of completely integrable systems for harmonic maps, followed by two chapters devoted to recent results on the regularity of weak solutions. A presentation of "exotic" functional spaces from the theory of harmonic analysis is given and these tools are then used...
This accessible introduction to harmonic map theory and its analytical aspects, covers recent developments in the regularity theory of weakly harmonic...