Wave motion in water is one of the most striking observable phenomena in nature. Throughout the twentieth century, development of the linearized theory of wave motion in fluids and hydrodynamic stability has been steady and significant. In the last three decades there have been remarkable developments in nonlinear dispersive waves in general, nonlinear water waves in particular, and nonlinear instability phenomena. New solutions are now available for waves modulatedin both space and time, which exhibit new phenomena as diverse as solitons, resonant interactions, side-band instability, and...

Wave motion in water is one of the most striking observable phenomena in nature. Throughout the twentieth century, development of the linearized theor...

Building on the success of the two previous editions, Introduction to Hilbert Spaces with Applications, Third Edition, offers an overview of the basic ideas and results of Hilbert space theory and functional analysis. It acquaints students with the Lebesgue integral, and includes an enhanced presentation of results and proofs. Students and researchers will benefit from the wealth of revised examples in new, diverse applications as they apply to optimization, variational and control problems, and problems in approximation theory, nonlinear instability, and bifurcation. The text also...

Building on the success of the two previous editions, Introduction to Hilbert Spaces with Applications, Third Edition, offers an overview of th...

The last fifteen years have produced major advances in the mathematical theory of wavelet transforms and their applications to science and engineering. In an effort to inform researchers in mathematics, physics, statistics, computer science, and engineering and to stimulate furtherresearch, an NSF-CBMS Research Conference on Wavelet Analysis was organized at the University of Central Florida in May 1998. Many distinguished mathematicians and scientists from allover the world participated in the conference and provided a digest of recent developments, open questions, and unsolved problems in...

The last fifteen years have produced major advances in the mathematical theory of wavelet transforms and their applications to science and engineering...

Provides a digest of the current developments, open questions and unsolved problems likely to determine a new frontier for future advanced study and research in the rapidly growing areas of wavelets, wavelet transforms, signal analysis, and signal and image processing. Ideal reference work for advanced students and practitioners in wavelets, and wavelet transforms, signal processing and time-frequency signal analysis. Professionals working in electrical and computer engineering, applied mathematics, computer science, biomedical engineering, physics, optics, and fluid mechanics will also...

Provides a digest of the current developments, open questions and unsolved problems likely to determine a new frontier for future advanced study an...

One of the most fundamental and active areas in mathematics, the theory of partial differential equations (PDEs) is essential in the modeling of natural phenomena. PDEs have a wide range of interesting and important applications in every branch of applied mathematics, physics, and engineering, including fluid dynamics, elasticity, and optics.

This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods...

One of the most fundamental and active areas in mathematics, the theory of partial differential equations (PDEs) is essential in the modeling of na...

The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas.

The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application...

This book primarily serves as a historical research monograph on the biographical sketch and career of Leonhard Euler and his major contributions to numerous areas in the mathematical and physical sciences. It contains fourteen chapters describing Euler's works on number theory, algebra, geometry, trigonometry, differential and integral calculus, analysis, infinite series and infinite products, ordinary and elliptic integrals and special functions, ordinary and partial differential equations, calculus of variations, graph theory and topology, mechanics and ballistic research,...

This book primarily serves as a historical research monograph on the biographical sketch and career of Leonhard Euler and his major contributions to n...

Provides a digest of the current developments, open questions and unsolved problems likely to determine a new frontier for future advanced study and research in the rapidly growing areas of wavelets, wavelet transforms, signal analysis, and signal and image processing. Ideal reference work for advanced students and practitioners in wavelets, and wavelet transforms, signal processing and time-frequency signal analysis. Professionals working in electrical and computer engineering, applied mathematics, computer science, biomedical engineering, physics, optics, and fluid mechanics will also...

Provides a digest of the current developments, open questions and unsolved problems likely to determine a new frontier for future advanced study an...

In 1934, G. H. Hardy et al. published a book entitled "Inequalities", in which a few theorems about Hilbert-type inequalities with homogeneous kernels of degree -one were considered. Since then, the theory of Hilbert-type discrete and integral inequalities is almost built by Prof. Bicheng Yang in their four published books. This monograph deals with half-discrete Hilbert-type inequalities. By means of building the theory of discrete and integral Hilbert-type inequalities, and applying the technique of Real Analysis and Summation Theory, some kinds of half-discrete Hilbert-type inequalities...

In 1934, G. H. Hardy et al. published a book entitled "Inequalities", in which a few theorems about Hilbert-type inequalities with homogeneous kernels...

The last fifteen years have produced major advances in the mathematical theory of wavelet transforms and their applications to science and engineering. In an effort to inform researchers in mathematics, physics, statistics, computer science, and engineering and to stimulate furtherresearch, an NSF-CBMS Research Conference on Wavelet Analysis was organized at the University of Central Florida in May 1998. Many distinguished mathematicians and scientists from allover the world participated in the conference and provided a digest of recent developments, open questions, and unsolved problems in...

The last fifteen years have produced major advances in the mathematical theory of wavelet transforms and their applications to science and engineering...