This is the second edition of Linear Models for Multivariate, Time Series and Spatial Data. It has a new title to indicate that it contains much new material. The primary changes are the addition of two new chapters: one on nonparametric regression and one on response surface maximization. As before, the presentations focus on the linear model aspects of the subject. For example, in the nonparametric regression chapter there is very little about kernal regression estimation but quite a bit about series approxi mations, splines, and regression trees, all of which can be viewed as linear...
This is the second edition of Linear Models for Multivariate, Time Series and Spatial Data. It has a new title to indicate that it contains much new m...
As the new title indicates, this second edition of Log-Linear Models has been modi?ed to place greater emphasis on logistic regression. In addition to new material, the book has been radically rearranged. The fundamental material is contained in Chapters 1-4. Intermediate topics are presented in Chapters 5 through 8. Generalized linear models are presented in Ch- ter 9. The matrix approach to log-linear models and logistic regression is presented in Chapters 10-12, with Chapters 10 and 11 at the applied Ph.D. level and Chapter 12 doing theory at the Ph.D. level. The largest single addition to...
As the new title indicates, this second edition of Log-Linear Models has been modi?ed to place greater emphasis on logistic regression. In addition to...
The third edition of Plane Answers includes fundamental changes in how some aspects of the theory are handled. Chapter 1 includes a new section that introduces generalized linear models. Primarily, this provides a defini tion so as to allow comments on how aspects of linear model theory extend to generalized linear models. For years I have been unhappy with the concept of estimability. Just because you cannot get a linear unbiased estimate of something does not mean you cannot estimate it. For example, it is obvious how to estimate the ratio of two contrasts in an ANOVA, just estimate each...
The third edition of Plane Answers includes fundamental changes in how some aspects of the theory are handled. Chapter 1 includes a new section that i...
This textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models, based on projections, orthogonality, and other vector space ideas. Every chapter comes with numerous exercises and examples that make it ideal for a graduate-level course. All of the standard topics are covered in depth: ANOVA, estimation including Bayesian estimation, hypothesis testing, multiple comparisons, regression analysis, and experimental...
This textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing...
The primary focus here is on log-linear models for contingency tables, but in this second edition, greater emphasis has been placed on logistic regression. The book explores topics such as logistic discrimination and generalised linear models, and builds upon the relationships between these basic models for continuous data and the analogous log-linear and logistic regression models for discrete data. It also carefully examines the differences in model interpretations and evaluations that occur due to the discrete nature of the data. Sample commands are given for analyses in SAS, BMFP, and...
The primary focus here is on log-linear models for contingency tables, but in this second edition, greater emphasis has been placed on logistic regres...
Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data, Second Edition presents linear structures for modeling data with an emphasis on how to incorporate specific ideas (hypotheses) about the structure of the data into a linear model for the data. The book carefully analyzes small data sets by using tools that are easily scaled to big data. The tools also apply to small relevant data sets that are extracted from big data.
New to the Second Edition
Reorganized to focus on unbalanced data
Reworked...
Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data, Second Edition presents linear structures for m...