? Concise background material for each chapter, open problems, exercises, bibliography, and comprehensive index make this work a fine pedagogical and reference resource.; New previously unpublished results appear on the homotopy of multiresolutions, approximation theory, the spectrum and structure of the fixed points of the associated transfer, subdivision operators; Key topics of wavelet theory are examined; Excellent graphics show how wavelets depend on the spectra of the transfer operators; The important role of the spectrum of a transfer operator is studied; This self-contained book deals...
? Concise background material for each chapter, open problems, exercises, bibliography, and comprehensive index make this work a fine pedagogical and ...
In this book we describe the elementary theory of operator algebras and parts of the advanced theory which are of relevance, or potentially of relevance, to mathematical physics. Subsequently we describe various applications to quantum statistical mechanics. At the outset of this project we intended to cover this material in one volume but in the course of develop ment it was realized that this would entail the omission ofvarious interesting topics or details. Consequently the book was split into two volumes, the first devoted to the general theory of operator algebras and the second to the...
In this book we describe the elementary theory of operator algebras and parts of the advanced theory which are of relevance, or potentially of relevan...
The theme of this symposium was operator algebras in a wide sense. In the last 40 years operator algebras has developed from a rather special dis- pline within functional analysis to become a central ?eld in mathematics often described as non-commutative geometry (see for example the book Non-Commutative Geometry by the Fields medalist Alain Connes). It has branched out in several sub-disciplines and made contact with other subjects like for example mathematical physics, algebraic topology, geometry, dyn- ical systems, knot theory, ergodic theory, wavelets, representations of groups and...
The theme of this symposium was operator algebras in a wide sense. In the last 40 years operator algebras has developed from a rather special dis- pli...
For almost two decades this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. It describes the general structure of equilibrium states, the KMS-condition and stability, quantum spin systems and continuous systems. Major changes in the new edition relate to Bose--Einstein condensation, the dynamics of the X-Y model and questions on phase transitions. Notes and remarks have been considerably augmented.
For almost two decades this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. It describes th...
This is the first of two volumes presenting the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis. The introductory chapter surveys the history and justification of algebraic techniques in statistical physics and outlines the applications that have been made. The second edition contains...
This is the first of two volumes presenting the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach ...
The theme of this symposium was operator algebras in a wide sense. In the last 40 years operator algebras has developed from a rather special dis- pline within functional analysis to become a central ?eld in mathematics often described as non-commutative geometry (see for example the book Non-Commutative Geometry by the Fields medalist Alain Connes). It has branched out in several sub-disciplines and made contact with other subjects like for example mathematical physics, algebraic topology, geometry, dyn- ical systems, knot theory, ergodic theory, wavelets, representations of groups and...
The theme of this symposium was operator algebras in a wide sense. In the last 40 years operator algebras has developed from a rather special dis- pli...
For almost two decades, this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. Major changes in the new edition relate to Bose-Einstein condensation, the dynamics of the X-Y model and questions on phase transitions.
For almost two decades, this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. Major chang...
? Concise background material for each chapter, open problems, exercises, bibliography, and comprehensive index make this work a fine pedagogical and reference resource.; New previously unpublished results appear on the homotopy of multiresolutions, approximation theory, the spectrum and structure of the fixed points of the associated transfer, subdivision operators; Key topics of wavelet theory are examined; Excellent graphics show how wavelets depend on the spectra of the transfer operators; The important role of the spectrum of a transfer operator is studied; This self-contained book deals...
? Concise background material for each chapter, open problems, exercises, bibliography, and comprehensive index make this work a fine pedagogical and ...