Armand Borel's mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of mathematics, Borel's work influenced some of the most important developments of contemporary mathematics. His first great achievement was to apply to Lie groups and homogenous spaces the powerful techniques of algebraic topology developed by Leray, Cartan and Steenrod. In 1992, Borel was awarded the International Balzan Prize for Mathematics for his fundamental contributions to the theory of Lie groups, algebraic groups and arithmetic groups, and...
Armand Borel's mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of math...
Armand Borel's mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of mathematics, Borel's work influenced some of the most important developments of contemporary mathematics. His first great achievement was to apply to Lie groups and homogenous spaces the powerful techniques of algebraic topology developed by Leray, Cartan and Steenrod. In 1992, Borel was awarded the International Balzan Prize for Mathematics "for his fundamental contributions to the theory of Lie groups, algebraic groups and arithmetic groups and...
Armand Borel's mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of math...