This tract develops the purely mathematical side of the theory of probability, without reference to any applications. When originally published, it was one of the earliest works in the field built on the axiomatic foundations introduced by A. Kolmogoroff in his book Grundbegriffe der Wahrscheinlichkeitsrechnung, thus treating the subject as a branch of the theory of completely additive set functions. The author restricts himself to a consideration of probability distributions in spaces of a finite number of dimensions, and to problems connected with the Central Limit Theorem and some of its...

This tract develops the purely mathematical side of the theory of probability, without reference to any applications. When originally published, it wa...

An important part of homological algebra deals with modules possessing projective resolutions of finite length. This goes back to Hilbert??'s famous theorem on syzygies through, in the earlier theory, free modules with finite bases were used rather than projective modules. The introduction of a wider class of resolutions led to a theory rich in results, but in the process certain special properties of finite free resolutions were overlooked. D. A. Buchsbaum and D. Eisenbud have shown that finite free resolutions have a fascinating structure theory. This has revived interest in the simpler...

An important part of homological algebra deals with modules possessing projective resolutions of finite length. This goes back to Hilbert??'s famous t...

This tract presents an exposition of methods for testing sets of special functions for completeness and basis properties, mostly in L2 and L2 spaces. The first chapter contains the theoretical background to the subject, largely in a general Hilbert space setting, and theorems in which the structure of Hilbert space is revealed by properties of its bases are dealt with. Later parts of the book deal with methods: for example, the Vitali criterion, together with its generalisations and applications, is discussed in some detail, and there is an introduction to the theory of stability of bases....

This tract presents an exposition of methods for testing sets of special functions for completeness and basis properties, mostly in L2 and L2 spaces. ...

The concept of Hopf algebras was first introduced in the theory of algebraic topology but in recent years has been developed by many mathematicians and applied to other areas of mathematics such as Lie groups, algebraic groups and Galois theory. This book is an introduction to the basic theory of Hopf algebras for the reader already familiar with the basic ideas of linear algebra and commutative algebra. After introducing and discussing the basic properties of coalgebras, bialgebras and Hopf algebras, the author treats the fundamental structure theorem of bi-modules and Sullivan's proof of...

The concept of Hopf algebras was first introduced in the theory of algebraic topology but in recent years has been developed by many mathematicians an...

Ergodic theory grew out of an important problem of statistical mechanics which was resolved by Birkhoff and von Neumann in the 1930s. Since that time the subject has made its way to the centre of pure mathematics, drawing on the techniques of many other areas and, in turn, influencing those areas. The author has provided in this slim volume a speedy introduction to a considerable number of topics and examples. He includes sections on the classical ergodic theorems, topological dynamics, uniform distribution, Martingales, information theory and entropy. There is a chapter on mixing and one on...

Ergodic theory grew out of an important problem of statistical mechanics which was resolved by Birkhoff and von Neumann in the 1930s. Since that time ...

Optimization is concerned with finding the best (optimal) solution to mathematical problems that may arise in economics, engineering, the social sciences and the mathematical sciences. As is suggested by its title, this book surveys various ways of penetrating the subject. The author begins with a selection of the type of problem to which optimization can be applied and the remainder of the book develops the theory, mainly from the viewpoint of mathematical programming. To prevent the treatment becoming too abstract, subjects which may be considered ?unpractical? are not touched upon. The...

Optimization is concerned with finding the best (optimal) solution to mathematical problems that may arise in economics, engineering, the social scien...

This is a self-contained, modern treatment of the algebraic theory of machines. Dr Holcombe examines various applications of the idea of a machine in biology, biochemistry and computer science and gives also a rigorous treatment of the way in which these machines can be decomposed and simulated by simpler ones. This treatment is based on fundamental ideas from modern algebra. Motivation for many of the newer results is provided by way of applications so this account should be accessible and valuable for those studying applied algebra or theoretical computer science at advanced undergraduate...

This is a self-contained, modern treatment of the algebraic theory of machines. Dr Holcombe examines various applications of the idea of a machine in ...

The purpose of this book is to present the theory of general irreducible Markov chains and to point out the connection between this and the Perron-Frobenius theory of nonnegative operators. The author begins by providing some basic material designed to make the book self-contained, yet his principal aim throughout is to emphasize recent developments. The technique of embedded renewal processes, common in the study of discrete Markov chains, plays a particularly important role. The examples discussed indicate applications to such topics as queueing theory, storage theory, autoregressive...

The purpose of this book is to present the theory of general irreducible Markov chains and to point out the connection between this and the Perron-Fro...