The central theme of this study is Artin's braid group and the many ways that the notion of a braid has proved to be important in low-dimensional topology.
In Chapter 1 the author is concerned with the concept of a braid as a group of motions of points in a manifold. She studies structural and algebraic properties of the braid groups of two manifolds, and derives systems of defining relations for the braid groups of the plane and sphere. In Chapter 2 she focuses on the connections between the classical braid group and the classical knot problem. After reviewing basic results she...
The central theme of this study is Artin's braid group and the many ways that the notion of a braid has proved to be important in low-dimensional t...