When we studied complex variables in the late 1960s, modem geometry on the complex fie1d and complex function theory were identified in teaching and research as several complex variables. A beginner in the field at that time would have the experience of jumping from the sheaf-theoretical methods employed in the theory of analytic spaces to the P.D.E. methods of the a problem, with the c1ear understanding that the phenomena lying behind such different methods and problems were the same. A few years later, new important discoveries made c1ear that complex differential geometry was also in the...
When we studied complex variables in the late 1960s, modem geometry on the complex fie1d and complex function theory were identified in teaching and r...
When we studied complex variables in the late 1960s, modem geometry on the complex fie1d and complex function theory were identified in teaching and research as several complex variables. A beginner in the field at that time would have the experience of jumping from the sheaf-theoretical methods employed in the theory of analytic spaces to the P.D.E. methods of the a- problem, with the c1ear understanding that the phenomena lying behind such different methods and problems were the same. A few years later, new important discoveries made c1ear that complex differential geometry was also in the...
When we studied complex variables in the late 1960s, modem geometry on the complex fie1d and complex function theory were identified in teaching and r...
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day," an initiative born in 2004 to present the most...
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal...
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day," an initiative born in 2004 to present the most...
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal...