This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on...
This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised ...
This book covers the state of the art in learning algorithms with an inclusion of semi-supervised methods to provide a broad scope of clustering and classification solutions for big data applications. Case studies and best practices are included along with theoretical models of learning for a comprehensive reference to the field. The book is organized into eight chapters that cover the following topics: discretization, feature extraction and selection, classification, clustering, topic modeling, graph analysis and applications. Practitioners and graduate students can use the volume as an...
This book covers the state of the art in learning algorithms with an inclusion of semi-supervised methods to provide a broad scope of clustering an...
This book describes in detail sampling techniques that can be used for unsupervised and supervised cases, with a focus on sampling techniques for machine learning algorithms. It covers theory and models of sampling methods for managing scalability and the “curse of dimensionality”, their implementations, evaluations, and applications. A large part of the book is dedicated to database comprising standard feature vectors, and a special section is reserved to the handling of more complex objects and dynamic scenarios. The book is ideal for anyone teaching or learning pattern recognition...
This book describes in detail sampling techniques that can be used for unsupervised and supervised cases, with a focus on sampling techniques for m...
This book focuses on recent advances, approaches, theories, and applications related Hidden Markov Models (HMMs). In particular, the book presents recent inference frameworks and applications that consider HMMs. The authors discuss challenging problems that exist when considering HMMs for a specific task or application, such as estimation or selection, etc. The goal of this volume is to summarize the recent advances and modern approaches related to these problems. The book also reports advances on classic but difficult problems in HMMs such as inference and feature selection and describes...
This book focuses on recent advances, approaches, theories, and applications related Hidden Markov Models (HMMs). In particular, the book presents rec...
This book focuses on recent advances, approaches, theories, and applications related Hidden Markov Models (HMMs). In particular, the book presents recent inference frameworks and applications that consider HMMs. The authors discuss challenging problems that exist when considering HMMs for a specific task or application, such as estimation or selection, etc. The goal of this volume is to summarize the recent advances and modern approaches related to these problems. The book also reports advances on classic but difficult problems in HMMs such as inference and feature selection and describes...
This book focuses on recent advances, approaches, theories, and applications related Hidden Markov Models (HMMs). In particular, the book presents rec...
This book presents advances in business computing and data analytics by discussing recent and innovative machine learning methods that have been designed to support decision-making processes. These methods form the theoretical foundations of intelligent management systems, which allows for companies to understand the market environment, to improve the analysis of customer needs, to propose creative personalization of contents, and to design more effective business strategies, products, and services. This book gives an overview of recent methods – such as blockchain, big data, artificial...
This book presents advances in business computing and data analytics by discussing recent and innovative machine learning methods that have been desig...
This book presents an overview of recent methods of feature selection and dimensionality reduction that are based on Deep Neural Networks (DNNs) for a clustering perspective, with particular attention to the knowledge discovery question. The authors first present a synthesis of the major recent influencing techniques and "tricks" participating in recent advances in deep clustering, as well as a recall of the main deep learning architectures. Secondly, the book highlights the most popular works by “family” to provide a more suitable starting point from which to develop a full...
This book presents an overview of recent methods of feature selection and dimensionality reduction that are based on Deep Neural Networks (DNNs) fo...
This book provides advances in computational logistics and supply chain analytics. The authors include innovative data-driven and learning-based approaches, methods, algorithms, techniques, and tools that have been designed or applied to create and implement a successful logistics and supply chain management process. This book highlights the state of the art and challenges related to the design and the application of computational methods to solve logistic and supply chain management problems. The authors present recent computational logistic methods and supply chain analytics techniques...
This book provides advances in computational logistics and supply chain analytics. The authors include innovative data-driven and learning-based ap...