In introducing his essays on the study and understanding of nature and e- lution, biologist Stephen J. Gould writes: W]e acquire a surprising source of rich and apparently limitless novelty from the primary documents of great thinkers throughout our history. But why should any nuggets, or even ?akes, be left for int- lectual miners in such terrain? Hasn't the Origin of Species been read untold millions of times? Hasn't every paragraph been subjected to overt scholarly scrutiny and exegesis? Letmeshareasecretrootedingeneralhumanfoibles. . . . Veryfew people, including authors willing to...
In introducing his essays on the study and understanding of nature and e- lution, biologist Stephen J. Gould writes: W]e acquire a surprising source ...
This book is about matrix and linear algebra, and their applications. For many students the tools of matrix and linear algebra will be as fundamental in their professional work as the tools of calculus; thus it is important to ensure that students appreciate the utility and beauty of these subjects as well as the mechanics. To this end, applied mathematics and mathematical modeling ought to have an important role in an introductory treatment of linear algebra. In this way students see that concepts of matrix and linear algebra make concrete problems workable. In this book we weave signi?cant...
This book is about matrix and linear algebra, and their applications. For many students the tools of matrix and linear algebra will be as fundamental ...
This book is an informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials. The new examples and theory are built in a well-motivated fashion and made relevant by many applications - to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900...
This book is an informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through...
Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the...
Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book...
"The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analysis and that achieves here a high degree of lucidity and clarity. The presentation is never awkward or dry, as it sometimes is in other "modern" textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all, this is an excellent work, of equally high value for both student and teacher." Zentralblatt fur...
"The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analy...
In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under-...
In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleg...
This book grew out of lectures on Riemann surfaces which the author gave at the universities of Munich, Regensburg and Munster. Its aim is to give an introduction to this rich and beautiful subject, while presenting methods from the theory of complex manifolds which, in the special case of one complex variable, turn out to be particularly elementary and transparent. The book is divided into three chapters. In the first chapter we consider Riemann surfaces as covering spaces and develop a few basics from topology which are needed for this. Then we construct the Riemann surfaces which arise via...
This book grew out of lectures on Riemann surfaces which the author gave at the universities of Munich, Regensburg and Munster. Its aim is to give an ...
The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m eded to under- stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the...
The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in th...
This book is a course in general topology, intended for students in the first year of the second cycle (in other words, students in their third univer- sity year). The course was taught during the first semester of the 1979-80 academic year (three hours a week of lecture, four hours a week of guided work). Topology is the study of the notions of limit and continuity and thus is, in principle, very ancient. However, we shall limit ourselves to the origins of the theory since the nineteenth century. One of the sources of topology is the effort to clarify the theory of real-valued functions of a...
This book is a course in general topology, intended for students in the first year of the second cycle (in other words, students in their third univer...