Fluorescence spectroscopy continues its advance to more sophisticated methods and applications. As one looks over the previous decades, its appears that the first practical instruments for time-resolved measurements appeared in the 1970's. The instrumentation and analysis methods for time-resolved fluorescence advanced rapidly throughout the 1980's. Since 1990 we have witnessed a rapid migration of the principles of time-resolved fluorescence to cell biology and clinical appli- tions. Most recently, we have seen the introduction of multi-photon excitation, pump-probe and stimulated emission...
Fluorescence spectroscopy continues its advance to more sophisticated methods and applications. As one looks over the previous decades, its appears th...
The intrinsic or natural fluorescence of proteins is perhaps the most complex area of biochemical fluorescence. Fortunately the fluorescent amino acids, phenylalanine, tyrosine and tryptophan are relatively rare in proteins. Tr- tophan is the dominant intrinsic fluorophore and is present at about one mole % in protein. As a result most proteins contain several tryptophan residues and even more tyrosine residues. The emission of each residue is affected by several excited state processes including spectral relaxation, proton loss for tyrosine, rotational motions and the presence of nearby...
The intrinsic or natural fluorescence of proteins is perhaps the most complex area of biochemical fluorescence. Fortunately the fluorescent amino acid...
During the past 15 years, there has been remarkable progress in the analysis and manipulation of DNA and its use in nanotechnology. DNA analysis is ubiquitous in molecular biology, medical diagnostics, and forensics. Much of the readout technology is based on fluorescence detection. This volume contains contributions from many experts in the field who present an overview of many aspects of DNA technology. These chapters provide an understanding of the underlying principles and technology, rather than an exhaustive review of the literature. Written in a clear straightforward style, this...
During the past 15 years, there has been remarkable progress in the analysis and manipulation of DNA and its use in nanotechnology. DNA analysis is...
In this inaugural volume of a new series, experts in the field help biochemists, analytical chemists, spectroscopists, biophysicists, and other specialists keep up with the latest techniques and technologies available in fluorescence spectroscopy.
In this inaugural volume of a new series, experts in the field help biochemists, analytical chemists, spectroscopists, biophysicists, and other specia...
Fluorescence spectroscopy and its applications to the physical and life sciences have evolved rapidly during the past decade. The increased interest in fluorescence appears to be due to advances in time resolution, methods of data analysis, and improved instrumentation. With these advances, it is now practical to perform time-resolved measurements with enough resolution to compare the results with the structural and dynamic features of mac- molecules, to probe the structures of proteins, membranes, and nucleic acids, and to acquire two-dimensional microscopic images of chemical or protein...
Fluorescence spectroscopy and its applications to the physical and life sciences have evolved rapidly during the past decade. The increased interest i...
Fluorescence spectroscopy and its applications to the physical and life sciences have evolved rapidly during the past decade. The increased interest in fluorescence appears to be due to advances in time resolution, methods of data analysis and improved instrumentation. With these advances, it is now practical to perform time-resolved measurements with enough resolution to compare the results with the structural and dynamic features of mac- molecules, to probe the structures of proteins, membranes, and nucleic acids, and to acquire two-dimensional microscopic images of chemical or protein...
Fluorescence spectroscopy and its applications to the physical and life sciences have evolved rapidly during the past decade. The increased interest i...
Time-resolved fluorescence spectroscopy is widely used as a research tool in bioch- istry and biophysics. These uses of fluorescence have resulted in extensive knowledge of the structure and dynamics of biological macromolecules. This information has been gained by studies of phenomena that affect the excited state, such as the local environment, quenching processes, and energy transfer. Topics in Fluorescence Spectroscopy, Volume 4: Probe Design and Chemical Sensing reflects a new trend, which is the use of time-resolved fluorescence in analytical and clinical chemistry. These emerging...
Time-resolved fluorescence spectroscopy is widely used as a research tool in bioch- istry and biophysics. These uses of fluorescence have resulted in ...