This book is about the Arduino microcontroller and the Arduino concept. The visionary Arduino team of Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis launched a new innovation in microcontroller hardware in 2005, the concept of open-source hardware. Their approach was to openly share details of microcontroller-based hardware design platforms to stimulate the sharing of ideas and promote innovation. This concept has been popular in the software world for many years. In June 2019, Joel Claypool and I met to plan the fourth edition of Arduino Microcontroller...
This book is about the Arduino microcontroller and the Arduino concept. The visionary Arduino team of Massimo Banzi, David Cuartielles, Tom Igoe, Gian...
A microcontroller is a compact, integrated circuit designed to govern a specific operation in an embedded system. A typical microcontroller includes a processor, memory, and input/output (I/O) peripherals on a single chip. When they first became available, microcontrollers solely used Assembly language. Today, the C programming language (and some other high-level languages) can be used as well. Some of advanced microcontrollers support another programming technique as well: Graphical programming. In graphical programming, the user does not write any code but draws the block diagram of the...
A microcontroller is a compact, integrated circuit designed to govern a specific operation in an embedded system. A typical microcontroller includes a...
Index generation functions are binary-input integer valued functions. They represent functions of content addressable memories (CAMs). Applications include: IP address tables; terminal controllers; URL lists; computer virus scanning circuits; memory patch circuits; list of English words; code converters; and pattern matching circuits.
This book shows memory-based realization of index generation functions. It shows:
1. methods to implement index generation functions by look-up table (LUT) cascades and index generation units (IGU),
2. methods to reduce the number of variables using...
Index generation functions are binary-input integer valued functions. They represent functions of content addressable memories (CAMs). Applications in...
Pragmatic Circuits: DC and Time Domain deals primarily with circuits and how they function, beginning with a review of Kirchhoff's and Ohm's Laws analysis of d-c circuits and op-amps, and the sinusoidal steady state. The author then looks at formal circuit analysis through nodal and mesh equations. Useful theorems like Thevenin are added to the circuits toolbox. This first of three volumes ends with a chapter on design. The two follow-up volumes in the Pragmatic Circuits series include titles on Frequency Domain and Signals and Filters.
These short lecture books will be of use to students at...
Pragmatic Circuits: DC and Time Domain deals primarily with circuits and how they function, beginning with a review of Kirchhoff's and Ohm's Laws anal...
Many electrical and computer engineering projects involve some kind of embedded system in which a microcontroller sits at the center as the primary source of control.
The recently-developed Arduino development platform includes an inexpensive hardware development board hosting an eight-bit ATMEL ATmega-family processor and a Java-based software-development environment. These features allow an embedded systems beginner the ability to focus their attention on learning how to write embedded software instead of wasting time overcoming the engineering CAD tools learning curve. The goal of this...
Many electrical and computer engineering projects involve some kind of embedded system in which a microcontroller sits at the center as the primary so...
This book is about the Arduino microcontroller and the Arduino concept. The visionary Arduino team of Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis launched a new innovation in microcontroller hardware in 2005, the concept of open-source hardware. Their approach was to openly share details of microcontroller-based hardware design platforms to stimulate the sharing of ideas and promote innovation. This concept has been popular in the software world for many years. In June 2019, Joel Claypool and I met to plan the fourth edition of Arduino...
This book is about the Arduino microcontroller and the Arduino concept. The visionary Arduino team of Massimo Banzi, David Cuartielles, Tom Igo...
This textbook provides practicing scientists and engineers a primer on the Microchip AVR® microcontroller. The revised title of this book reflects the 2016 Microchip Technology acquisition of Atmel Corporation. In this third edition we highlight the popular ATmega164 microcontroller and other pin-for-pin controllers in the family with a complement of flash memory up to 128 KB. The third edition also provides an update on Atmel Studio, programming with a USB pod, the gcc compiler, the ImageCraft JumpStart C for AVR compiler, the Two-Wire Interface (TWI), and multiple examples at both the...
This textbook provides practicing scientists and engineers a primer on the Microchip AVR® microcontroller. The revised title of this book reflects th...
This book is about the Arduino microcontroller and the Arduino concept. The visionary Arduino team of Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis launched a new innovation in microcontroller hardware in 2005, the concept of open-source hardware. Their approach was to openly share details of microcontroller-based hardware design platforms to stimulate the sharing of ideas and promote innovation. This concept has been popular in the software world for many years. In June 2019, Joel Claypool and I met to plan the fourth edition of Arduino Microcontroller...
This book is about the Arduino microcontroller and the Arduino concept. The visionary Arduino team of Massimo Banzi, David Cuartielles, Tom Igoe, Gian...
At first sight, quantum computing is completely different from classical computing. Nevertheless, a link is provided by reversible computation. Whereas an arbitrary quantum circuit, acting on ?? qubits, is described by an ?? × ?? unitary matrix with ??=2??, a reversible classical circuit, acting on ?? bits, is described by a 2?? × 2?? permutation matrix. The permutation matrices are studied in group theory of finite groups (in particular the symmetric group ????); the unitary matrices are discussed in group theory of continuous groups (a.k.a. Lie groups, in particular the unitary...
At first sight, quantum computing is completely different from classical computing. Nevertheless, a link is provided by reversible computation....
This textbook provides readers with a comprehensive introduction to various noise sources that significantly reduce performance and reliability in nanometer-scale integrated circuits. The author covers different types of noise, such as crosstalk noise caused by signal switching of adjacent wires, power supply noise or IR voltage drop in the power line due to simultaneous buffer / gate switching events, substrate coupling noise, radiation-induced transients, thermally induced noise and noise due to process and environmental Coverages also includes the relationship...
This textbook provides readers with a comprehensive introduction to various noise sources that significantly reduce performance and reliability i...