Stochastic portfolio theory is a mathematical methodology for constructing stock portfolios, analyzing the behavior of portfolios, and understanding the structure of equity markets. Stochastic portfolio theory has both theoretical and practical applications: as a theoretical tool it can be used to construct examples of theoretical portfolios with specified characteristics, and to determine the distributional component of portfolio return. On a practical level, stochastic portfolio theory has been the basis for strategies used for over a decade by the institutional equity manager INTECH, where...
Stochastic portfolio theory is a mathematical methodology for constructing stock portfolios, analyzing the behavior of portfolios, and understanding t...
From the reviews: "This book nicely complements the existing literature on information and coding theory by concentrating on arbitrary nonstationary and/or nonergodic sources and channels with arbitrarily large alphabets. Even with such generality the authors have managed to successfully reach a highly unconventional but very fertile exposition rendering new insights into many problems." -- MATHEMATICAL REVIEWS
From the reviews: "This book nicely complements the existing literature on information and coding theory by concentrating on arbitrary nonstationar...
Queueing theory is a fascinating subject in Applied Probability for two con- tradictory reasons: it sometimes requires the most sophisticated tools of stochastic processes, and it often leads to simple and explicit answers. More- over its interest has been steadily growing since the pioneering work of Erlang in 1917 on the blocking of telephone calls, to the more recent applications on the design of broadband communication networks and on the performance evaluation of computer architectures. All this led to a huge literature, articles and books, at various levels of mathematical rigor....
Queueing theory is a fascinating subject in Applied Probability for two con- tradictory reasons: it sometimes requires the most sophisticated tools of...
This book is based on a seminar given at the University of California at Los Angeles in the Spring of 1975. The choice of topics reflects my interests at the time and the needs of the students taking the course. Initially the lectures were written up for publication in the Lecture Notes series. How- ever, when I accepted Professor A. V. Balakrishnan's invitation to publish them in the Springer series on Applications of Mathematics it became necessary to alter the informal and often abridged style of the notes and to rewrite or expand much of the original manuscript so as to make the book as...
This book is based on a seminar given at the University of California at Los Angeles in the Spring of 1975. The choice of topics reflects my interests...
As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics.
In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the...
As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and o...
This book is designed for students who want to develop professional skill in stochastic calculus and its application to problems in finance. The Wharton School course that forms the basis for this book is designed for energetic students who have had some experience with probability and statistics but have not had ad- vanced courses in stochastic processes. Although the course assumes only a modest background, it moves quickly, and in the end, students can expect to have tools that are deep enough and rich enough to be relied on throughout their professional careers. The course begins with...
This book is designed for students who want to develop professional skill in stochastic calculus and its application to problems in finance. The Whart...
It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach."
...
It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach...
At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not operate widely with such notions as semimartingale, stochastic integral with respect to semimartingale, the ItO formula for semimartingales, etc. At that time in stochastic calculus (theory of martingales), the main object was the square integrable martingale. In a short time, this theory was applied to such areas as nonlinear filtering, optimal stochastic control, statistics for diffusion- type processes. In the first edition of these volumes,...
At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not op...
At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not operate widely with such notions as semimartingale, stochastic integral with respect to semimartingale, the Ito formula for semimartingales, etc. At that time in stochastic calculus (theory of martingales), the main object was the square integrable martingale. In a short time, this theory was applied to such areas as nonlinear filtering, optimal stochastic control, statistics for diffusion- type processes. In the first edition of these volumes,...
At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not op...
The aim of this book is to provide an accessible introduction to stochastic differ- ential equations and their applications together with a systematic presentation of methods available for their numerical solution. During the past decade there has been an accelerating interest in the de- velopment of numerical methods for stochastic differential equations (SDEs). This activity has been as strong in the engineering and physical sciences as it has in mathematics, resulting inevitably in some duplication of effort due to an unfamiliarity with the developments in other disciplines. Much of the...
The aim of this book is to provide an accessible introduction to stochastic differ- ential equations and their applications together with a systematic...