This book studies using string-net models to accomplish a direct, purely two-dimensional, approach to correlators of two-dimensional rational conformal field theories. The authors obtain concise geometric expressions for the objects describing bulk and boundary fields in terms of idempotents in the cylinder category of the underlying modular fusion category, comprising more general classes of fields than is standard in the literature. Combining these idempotents with Frobenius graphs on the world sheet yields string nets that form a consistent system of correlators, i.e. a system of...
This book studies using string-net models to accomplish a direct, purely two-dimensional, approach to correlators of two-dimensional rational conforma...
The book addresses a key question in topological field theory and logarithmic conformal field theory: In the case where the underlying modular category is not semisimple, topological field theory appears to suggest that mapping class groups do not only act on the spaces of chiral conformal blocks, which arise from the homomorphism functors in the category, but also act on the spaces that arise from the corresponding derived functors. It is natural to ask whether this is indeed the case. The book carefully approaches this question by first providing a detailed introduction to surfaces and...
The book addresses a key question in topological field theory and logarithmic conformal field theory: In the case where the underlying modular categor...
Hermite's theorem makes it known that there are three levels of mathematical frames in which a simple addition formula is valid. They are rational, q-analogue, and elliptic-analogue. Based on the addition formula and associated mathematical structures, productive studies have been carried out in the process ofq-extension of the rational (classical) formulas in enumerative combinatorics, theory of special functions, representation theory, study of integrable systems, and so on. Originating from the paper by Date, Jimbo, Kuniba, Miwa, and Okado on the exactly solvable statistical mechanics...
Hermite's theorem makes it known that there are three levels of mathematical frames in which a simple addition formula is valid. They are rational, q-...
In recent years, there has been an increased interest in exploring the connections between various disciplines of mathematics and theoretical physics such as representation theory, algebraic geometry, quantum field theory, and string theory. One of the challenges of modern mathematical physics is to understand rigorously the idea of quantization. The program of quantization by branes, which comes from string theory, is explored in the book.This book provides a detailed description of the geometric approach to the representation theory of the double affine Hecke algebra (DAHA) of rank one....
In recent years, there has been an increased interest in exploring the connections between various disciplines of mathematics and theoretical physics ...