This brief brings together the theoretical aspects of star formation and ionized regions with the most up-to-date simulations and observations. Beginning with the basic theory of star formation, the physics of expanding HII regions is reviewed in detail and a discussion on how a massive star can give birth to tens or hundreds of other stars follows. The theoretical description of star formation is shown in simplified and state-of-the-art numerical simulations, describing in a more clear way how feedback from massive stars can trigger star and planet formation. This is also combined with...
This brief brings together the theoretical aspects of star formation and ionized regions with the most up-to-date simulations and observations. Beginn...
The Fundamentals of Modern Astrophysics provides an overview of the modern science of astrophysics. It covers the Sun, Solar System bodies, exoplanets, stars, and star life cycle, planetary systems origin and evolution, basics of astrobiology, our galaxy the Milky Way, other galaxies and galactic clusters, a general view of the Universe, its structure, evolution and fate, modern views and advanced models of cosmology as well as the synergy of micro- and macro physics, standard model, superstring theory, multiversity and worm holes.
The main concepts of modern astrophysics and...
The Fundamentals of Modern Astrophysics provides an overview of the modern science of astrophysics. It covers the Sun, Solar System bodies, ...
From a noted specialist in astronomy education and outreach, this Brief provides an overview of the most influential discipline-based science education research literature now guiding contemporary astronomy teaching. In recent years, systematic studies of effective and efficient teaching strategies have provided a solid foundation for enhancing college-level students' learning in astronomy. Teaching astronomy and planetary science at the college-level was once best characterized as professor-centered, information-download lectures. Today, astronomy faculty are striving to drastically improve...
From a noted specialist in astronomy education and outreach, this Brief provides an overview of the most influential discipline-based science educatio...
The development of numerical tools, including modern symplectic methods, are presented as they pertain to the identification of short-term chaos and long term integrations of the orbits of many astronomical architectures such as stellar triples, planets in binaries, and single stars that host multiple exoplanets.
The development of numerical tools, including modern symplectic methods, are presented as they pertain to the identification of short-term chaos and l...
This book explores the relations between physical parameters of extrasolar planets and their respective parent stars. Planetary parameters are often directly dependent upon their stellar counterparts. In addition, the star is almost always the only visible component of the system and contains most of the system mass. Consequently, the parent star heavily influences every aspect of planetary physics and astrophysics. Drs. Kaspar von Braun and Tabetha Boyajian use direct methods to characterize exoplanet host starts that minimize the number of assumptions needed to be made in the...
This book explores the relations between physical parameters of extrasolar planets and their respective parent stars. Planetary parameters are often d...