This short monograph is the first book to focus exclusively on the study of summability methods, which have become active areas of research in recent years. The book provides basic definitions of sequence spaces, matrix transformations, regular matrices and some special matrices, making the material accessible to mathematicians who are new to the subject. Among the core items covered are the proof of the Prime Number Theorem using Lambert's summability and Wiener's Tauberian theorem, some results on summability tests for singular points of an analytic function, and analytic continuation...
This short monograph is the first book to focus exclusively on the study of summability methods, which have become active areas of research in recent ...
This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the manner in which the various hypotheses are unified using functional analysis. Indeed, a major contribution of the book is the coherent development of locally convex topologies for the space of real analytic sections of a vector bundle, and the development of this in a manner that relates easily to...
This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely...
This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations take the form of Lyapunov-Perron integrals, which are further characterized in Volume II as pullback limits associated with some partially coupled backward-forward systems. This pullback characterization provides a useful interpretation of the corresponding approximating manifolds and leads to a simple framework that...
This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic inv...
This book gives a concise introduction to the classical theory of stochastic partial differential equations (SPDEs). It begins by describing the classes of equations which are studied later in the book, together with a list of motivating examples of SPDEs which are used in physics, population dynamics, neurophysiology, finance and signal processing. The central part of the book studies SPDEs as infinite-dimensional SDEs, based on the variational approach to PDEs. This extends both the classical Itô formulation and the martingale problem approach due to Stroock and Varadhan. The final...
This book gives a concise introduction to the classical theory of stochastic partial differential equations (SPDEs). It begins by describing t...
This brief aims to merge the theories of fractional calculus and discrete calculus in a concise but comprehensive manner. It is designed for graduate students, but will be useful for any researcher interested in the theory of discrete fractional calculus and fractional difference equations.
This brief aims to merge the theories of fractional calculus and discrete calculus in a concise but comprehensive manner. It is designed for graduate ...
This book aims the optimal design of a material (thermic or electrical) obtained as the mixture of a finite number of original materials, not necessarily isotropic. The problem is to place these materials in such a way that the solution of the corresponding state equation minimizes a certain functional that can depend nonlinearly on the gradient of the state function. This is the main novelty in the book.
It is well known that this type of problems has no solution in general and therefore that it is needed to work with a relaxed formulation. The main results in the book refer to...
This book aims the optimal design of a material (thermic or electrical) obtained as the mixture of a finite number of original materials, not neces...
The focus of this book is on the further development of the classical achievements in analysis of several complex variables, the analytic continuation and the analytic structure of sets, to settings in which the q-pseudoconvexity in the sense of Rothstein and the q-convexity in the sense of Grauert play a crucial role. After giving a brief survey of notions of generalized convexity and their most important results, the authors present recent statements on analytic continuation related to them.
Rothstein (1955) first introduced q-pseudoconvexity using...
The focus of this book is on the further development of the classical achievements in analysis of several complex variables, the analytic continuat...
This book offers a structured algebraic and geometric approach to the classification and construction of quantum codes for topological quantum computation. It combines key concepts in linear algebra, algebraic topology, hyperbolic geometry, group theory, quantum mechanics, and classical and quantum coding theory to help readers understand and develop quantum codes for topological quantum computation.
One possible approach to building a quantum computer is based on surface codes, operated as stabilizer codes. The surface codes evolved from Kitaev's toric codes, as...
This book offers a structured algebraic and geometric approach to the classification and construction of quantum codes for topological quantum co...
This book provides a comprehensive survey of the Sharkovsky ordering, its different aspects and its role in dynamical systems theory and applications. It addresses the coexistence of cycles for continuous interval maps and one-dimensional spaces, combinatorial dynamics on the interval and multidimensional dynamical systems. Also featured is a short chapter of personal remarks by O.M. Sharkovsky on the history of the Sharkovsky ordering, the discovery of which almost 60 years ago led to the inception of combinatorial dynamics. Now one of cornerstones of dynamics, bifurcation...
This book provides a comprehensive survey of the Sharkovsky ordering, its different aspects and its role in dynamical systems theory and appli...
This book focuses on linear time eigenvalue location algorithms for graphs. This subject relates to spectral graph theory, a field that combines tools and concepts of linear algebra and combinatorics, with applications ranging from image processing and data analysis to molecular descriptors and random walks. It has attracted a lot of attention and has since emerged as an area on its own.
Studies in spectral graph theory seek to determine properties of a graph through matrices associated with it. It turns out that eigenvalues and eigenvectors have...
This book focuses on linear time eigenvalue location algorithms for graphs. This subject relates to spectral graph theory, a field that comb...