This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Most analyses were done with the MIXED procedure of the SAS software package, but the data analyses are presented in a software-independent...
This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts maj...
A treatment of the problems of inference associated with experiments in science, with the emphasis on techniques for dividing the sample information into various parts, such that the diverse problems of inference that arise from repeatable experiments may be addressed. A particularly valuable feature is the large number of practical examples, many of which use data taken from experiments published in various scientific journals. This book evolved from the authors own courses on statistical inference, and assumes an introductory course in probability, including the calculation and manipulation...
A treatment of the problems of inference associated with experiments in science, with the emphasis on techniques for dividing the sample information i...
Intercropping is an area of research for which there is a desperate need, both in developing countries where people are rapidly depleting scarce resources and still starving, and in developed countries, where more ecologically and economically sound ways of feeding ourselves must be developed. The only published guidelines for conducting such research and analyzing the data have been scattered about in various journal articles, many of which are hard to find. This book condenses these methods and will be immensely valuable to agricultural researchers and to the statisticians who help them...
Intercropping is an area of research for which there is a desperate need, both in developing countries where people are rapidly depleting scarce resou...
The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into...
Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical...
Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and compli...
This book presents the latest statistical methods required for applying functional data analysis to problems arising in geosciences, finance, economics and biology. It describes all procedures algorithmically, supported by a complete asymptotic theory.
This book presents the latest statistical methods required for applying functional data analysis to problems arising in geosciences, finance, economic...
Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Grobner bases for constructing a connected Markov chain for performing conditional tests of a discrete exponential family. In this book we take up this topic and present a detailed summary of developments following the seminal work of Diaconis and Sturmfels.
This book is intended for statisticians with minimal backgrounds in algebra. As we ourselves...
Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the ...
This is the first book in longitudinal categorical data analysis with parametric correlation models developed based on dynamic relationships among repeated categorical responses. This book is a natural generalization of the longitudinal binary data analysis to the multinomial data setup with more than two categories. Thus, unlike the existing books on cross-sectional categorical data analysis using log linear models, this book uses multinomial probability models both in cross-sectional and longitudinal setups. A theoretical foundation is provided for the analysis of univariate multinomial...
This is the first book in longitudinal categorical data analysis with parametric correlation models developed based on dynamic relationships among rep...
Gini's mean difference (GMD) was first introduced by Corrado Gini in 1912 as an alternative measure of variability. GMD and the parameters which are derived from it (such as the Gini coefficient or the concentration ratio) have been in use in the area of income distribution for almost a century. In practice, the use of GMD as a measure of variability is justified whenever the investigator is not ready to impose, without questioning, the convenient world of normality. This makes the GMD of critical importance in the complex research of statisticians, economists, econometricians, and policy...
Gini's mean difference (GMD) was first introduced by Corrado Gini in 1912 as an alternative measure of variability. GMD and the parameters which are d...
This book presents a greatly enlarged statistical framework compared to generalized linear models (GLMs) with which to approach regression modelling. Comprising of about half-a-dozen major classes of statistical models, and fortified with necessary infrastructure to make the models more fully operable, the framework allows analyses based on many semi-traditional applied statistics models to be performed as a coherent whole.
Since their advent in 1972, GLMs have unified important distributions under a single umbrella with enormous implications. However, GLMs are not flexible enough...
This book presents a greatly enlarged statistical framework compared to generalized linear models (GLMs) with which to approach regression modellin...