This textbook highlights the many practical uses of stable distributions, exploring the theory, numerical algorithms, and statistical methods used to work with stable laws. Because of the author’s accessible and comprehensive approach, readers will be able to understand and use these methods. Both mathematicians and non-mathematicians will find this a valuable resource for more accurately modelling and predicting large values in a number of real-world scenarios.
Beginning with an introductory chapter that explains key ideas about stable laws, readers will be...
This textbook highlights the many practical uses of stable distributions, exploring the theory, numerical algorithms, and statistical methods use...
This book presents a unified theory of convex functions, sets, and set-valued mappings in topological vector spaces with its specifications to locally convex, Banach and finite-dimensional settings. These developments and expositions are based on the powerful geometric approach of variational analysis, which resides on set extremality with its characterizations and specifications in the presence of convexity. Using this approach, the text consolidates the device of fundamental facts of generalized differential calculus to obtain novel results for convex sets, functions, and set-valued...
This book presents a unified theory of convex functions, sets, and set-valued mappings in topological vector spaces with its specifications to lo...
This monograph presents a comprehensive treatment of the maximum-entropy sampling problem (MESP), which is a fascinating topic at the intersection of mathematical optimization and data science. The text situates MESP in information theory, as the algorithmic problem of calculating a sub-vector of pre-specificed size from a multivariate Gaussian random vector, so as to maximize Shannon's differential entropy. The text collects and expands on state-of-the-art algorithms for MESP, and addresses its application in the field of environmental monitoring. While MESP is a central...
This monograph presents a comprehensive treatment of the maximum-entropy sampling problem (MESP), which is a fascinating topic at the intersection of ...
This book aims at an innovative approach within the framework of convex analysis and optimization, based on an in-depth study of the behavior and properties of the supremum of families of convex functions. It presents an original and systematic treatment of convex analysis, covering standard results and improved calculus rules in subdifferential analysis. The tools supplied in the text allow a direct approach to the mathematical foundations of convex optimization, in particular to optimality and duality theory. Other applications in the book concern convexification processes in...
This book aims at an innovative approach within the framework of convex analysis and optimization, based on an in-depth study of the behavior and prop...