The purpose of this monograph is to present the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Highlighted are the new precise results on the L² extension of holomorphic functions.
In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity,...
The purpose of this monograph is to present the current status of a rapidly developing part of several complex variables, motivated by the applicab...
This book gives a systematic presentation of real algebraic varieties.
Real algebraic varieties are ubiquitous.They are the first objects encountered when learning of coordinates, then equations, but the systematic study of these objects, however elementary they may be, is formidable.
This book is intended for two kinds of audiences: it accompanies the reader, familiar with algebra and geometry at the masters level, in learning the basics of this rich theory, as much as it brings to the most advanced reader many fundamental results often missing from the available...
This book gives a systematic presentation of real algebraic varieties.
Real algebraic varieties are ubiquitous.They are the...
The package of Gromov’s pseudo-holomorphic curves is a major tool in global symplectic geometry and its applications, including mirror symmetry and Hamiltonian dynamics. The Kuranishi structure was introduced by two of the authors of the present volume in the mid-1990s to apply this machinery on general symplectic manifolds without assuming any specific restrictions. It was further amplified by this book’s authors in their monograph Lagrangian Intersection Floer Theory and in many other publications of theirs and others. Answering popular demand, the authors now present the...
The package of Gromov’s pseudo-holomorphic curves is a major tool in global symplectic geometry and its applications, including mirror symmetry...
This book provides a detailed study of nonlinear partial differential equations satisfying certain nonstandard growth conditions which simultaneously extend polynomial, inhomogeneous and fully anisotropic growth. The common property of the many different kinds of equations considered is that the growth conditions of the highest order operators lead to a formulation of the equations in Musielak–Orlicz spaces. This high level of generality, understood as full anisotropy and inhomogeneity, requires new proof concepts and a generalization of the formalism, calling for an extended functional...
This book provides a detailed study of nonlinear partial differential equations satisfying certain nonstandard growth conditions which simultaneous...
This book is devoted to Killing vector fields and the one-parameter isometry groups of Riemannian manifolds generated by them. It also provides a detailed introduction to homogeneous geodesics, that is, geodesics that are integral curves of Killing vector fields, presenting both classical and modern results, some very recent, many of which are due to the authors. The main focus is on the class of Riemannian manifolds with homogeneous geodesics and on some of its important subclasses.
To keep the exposition self-contained the book also includes useful general results not only on...
This book is devoted to Killing vector fields and the one-parameter isometry groups of Riemannian manifolds generated by them. It also provides a d...
This book presents the theory of optimal and critical regularities of groups of diffeomorphisms, from the classical work of Denjoy and Herman, up through recent advances. Beginning with an investigation of regularity phenomena for single diffeomorphisms, the book goes on to describes a circle of ideas surrounding Filipkiewicz's Theorem, which recovers the smooth structure of a manifold from its full diffeomorphism group. Topics covered include the simplicity of homeomorphism groups, differentiability of continuous Lie group actions, smooth conjugation of diffeomorphism groups, and the...
This book presents the theory of optimal and critical regularities of groups of diffeomorphisms, from the classical work of Denjoy and Herman, up t...
This book is devoted to the structure of the absolute Galois groups of certain algebraic extensions of the field of rational numbers. Its main result, a theorem proved by the authors and Florian Pop in 2012, describes the absolute Galois group of distinguished semi-local algebraic (and other) extensions of the rational numbers as free products of the free profinite group on countably many generators and local Galois groups. This is an instance of a positive answer to the generalized inverse problem of Galois theory.
Adopting both an arithmetic and probabilistic approach, the book...
This book is devoted to the structure of the absolute Galois groups of certain algebraic extensions of the field of rational numbers. Its main resu...
This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov’s pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov’s theorem, namely that finitely generated groups of polynomial...
This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov’s pivotal work in the 1980s. It inc...
This monograph offers a coherent, self-contained account of the theory of Sinai–Ruelle–Bowen measures and decay of correlations for nonuniformly hyperbolic dynamical systems.
A central topic in the statistical theory of dynamical systems, the book in particular provides a detailed exposition of the theory developed by L.-S. Young for systems admitting induced maps with certain analytic and geometric properties. After a brief introduction and preliminary results, Chapters 3, 4, 6 and 7 provide essentially the same pattern of results in increasingly interesting and complicated settings....
This monograph offers a coherent, self-contained account of the theory of Sinai–Ruelle–Bowen measures and decay of correlations for nonuniformly h...
The ever-growing applications and richness of approaches to the Riordan group is captured in this comprehensive monograph, authored by those who are among the founders and foremost world experts in this field. The concept of a Riordan array has played a unifying role in enumerative combinatorics over the last three decades. The Riordan arrays and Riordan group is a new growth point in mathematics that is both being influenced by, and continuing its contributions to, other fields such as Lie groups, elliptic curves, orthogonal polynomials, spline functions, networks, sequences and...
The ever-growing applications and richness of approaches to the Riordan group is captured in this comprehensive monograph, authored by those who ...