Almost 100 years have passed since Trautz and Lewis put forward their collision theory of molecular processes. Today, knowledge of molecular collisions forms a key part of predicting and understanding chemical reactions. This book begins by setting out the classical and quantum theories of atom-atom collisions. Experimentally observable aspects of the scattering processes; their relationship to reaction rate constants and the experimental methods used to determine them are described. The quantum mechanical theory of reactive scattering is presented and related to experimental observables. The...
Almost 100 years have passed since Trautz and Lewis put forward their collision theory of molecular processes. Today, knowledge of molecular collision...
Covering computational tools in drug design using techniques from chemoinformatics, molecular modelling and computational chemistry, this book explores these methodologies and applications of in silico medicinal chemistry. The first part of the book covers molecular representation methods in computing in terms of chemical structure, together with guides on common structure file formats. The second part examines commonly used classes of molecular descriptors. The third part provides a guide to statistical learning methods using chemical structure data, covering topics such as similarity...
Covering computational tools in drug design using techniques from chemoinformatics, molecular modelling and computational chemistry, this book explore...