This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact...
This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in ter...
This book focuses on a selection of special topics, with emphasis on past and present research of the authors on “canonical” Riemannian metrics on smooth manifolds.
On the backdrop of the fundamental contributions given by many experts in the field, the volume offers a self-contained view of the wide class of “Curvature Conditions” and “Critical Metrics” of suitable Riemannian functionals. The authors describe the classical examples and the relevant generalizations.
This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for...
This book focuses on a selection of special topics, with emphasis on past and present research of the authors on “canonical” Riemannian metrics...
The Hardy–Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact...
The Hardy–Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since pro...
Since the birth of rational homotopy theory, the possibility of extending the Quillen approach – in terms of Lie algebras – to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version.
In this book, the authors develop new tools to address these problems. Working with...
Since the birth of rational homotopy theory, the possibility of extending the Quillen approach – in terms of Lie algebras – to a more gen...
This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and...
This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geom...
This book is an outgrowth of the conference “Regulators IV: An International Conference on Arithmetic L-functions and Differential Geometric Methods” that was held in Paris in May 2016. Gathering contributions by leading experts in the field ranging from original surveys to pure research articles, this volume provides comprehensive coverage of the front most developments in the field of regulator maps. Key topics covered are:
• Additive polylogarithms
• Analytic torsions
• Chabauty-Kim theory
• Local Grothendieck-Riemann-Roch...
This book is an outgrowth of the conference “Regulators IV: An International Conference on Arithmetic L-functions and Differential Geometric...
This monograph presents an approachable proof of Mirzakhani’s curve counting theorem, both for simple and non-simple curves. Designed to welcome readers to the area, the presentation builds intuition with elementary examples before progressing to rigorous proofs. This approach illuminates new and established results alike, and produces versatile tools for studying the geometry of hyperbolic surfaces, Teichmüller theory, and mapping class groups.
Beginning with the preliminaries of curves and arcs on surfaces, the authors go on to present the theory of geodesic currents in...
This monograph presents an approachable proof of Mirzakhani’s curve counting theorem, both for simple and non-simple curves. Designed to welcome ...
This book provides an overview of the latest progress on rationality questions in algebraic geometry. It discusses new developments such as universal triviality of the Chow group of zero cycles, various aspects of stable birationality, cubic and Fano fourfolds, rationality of moduli spaces and birational invariants of group actions on varieties, contributed by the foremost experts in their fields.
The question of whether an algebraic variety can be parametrized by rational functions of as many variables as its dimension has a long history and played an important role in the history...
This book provides an overview of the latest progress on rationality questions in algebraic geometry. It discusses new developments such as univers...
In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors...
In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the ...