Finite reductive groups and their representations lie at the heart of group theory. This volume treats linear representations of finite reductive groups and their modular aspects together with Hecke algebras, complex reflection groups, quantum groups, arithmetic groups, Lie groups, symmetric groups and general finite groups.
Finite reductive groups and their representations lie at the heart of group theory. This volume treats linear representations of finite reductive g...
The articles in this volume are an outgrowth of a colloquium "Systemes Integrables et Feuilletages," which was held in honor of the sixtieth birthday of Pierre Molino. The topics cover the broad range of mathematical areas which were of keen interest to Molino, namely, integral systems and more generally symplectic geometry and Poisson structures, foliations and Lie transverse structures, transitive structures, and classification problems.
The articles in this volume are an outgrowth of a colloquium "Systemes Integrables et Feuilletages," which was held in honor of the sixtieth birthday ...
The representation theory of Lie groups plays a central role in both clas sical and recent developments in many parts of mathematics and physics. In August, 1995, the Fifth Workshop on Representation Theory of Lie Groups and its Applications took place at the Universidad Nacional de Cordoba in Argentina. Organized by Joseph Wolf, Nolan Wallach, Roberto Miatello, Juan Tirao, and Jorge Vargas, the workshop offered expository courses on current research, and individual lectures on more specialized topics. The present vol ume reflects the dual character of the workshop. Many of the articles will...
The representation theory of Lie groups plays a central role in both clas sical and recent developments in many parts of mathematics and physics. In A...
A four-day conference, "Functional Analysis on the Eve of the Twenty First Century," was held at Rutgers University, New Brunswick, New Jersey, from October 24 to 27, 1993, in honor of the eightieth birthday of Professor Israel Moiseyevich Gelfand. He was born in Krasnye Okna, near Odessa, on September 2, 1913. Israel Gelfand has played a crucial role in the development of functional analysis during the last half-century. His work and his philosophy have in fact helped to shape our understanding of the term "functional analysis" itself, as has the celebrated journal Functional Analysis and...
A four-day conference, "Functional Analysis on the Eve of the Twenty First Century," was held at Rutgers University, New Brunswick, New Jersey, from O...
This generalization of geometry is bound to have wide spread repercussions for mathematics as well as physics. The unearthing of it will entail a new golden age in the interaction of mathematics and physics. E. Witten (1986) The idea that the moduli space Mg of curves of fixed genus 9 - that is, the algebraic variety that parametrizes all curves of genus 9 - is an intriguing object in its own right seems to have come slowly. Although the para meters or moduli of curves surface in Riemann's famous memoir on abelian functions (from 1857) and in work of Hurwitz and later were considered by the...
This generalization of geometry is bound to have wide spread repercussions for mathematics as well as physics. The unearthing of it will entail a new ...
The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc tures of conformal field theories. Much of the recent progress has deep connec tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in Man) that the quantum theory of (super )strings existed...
The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in t...
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples.
* Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications.
* Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples.
As the interaction of mathematics and theoretical physics continues to intensify, the theories developed in mathematics are being applied to physics, and conversely. This book centers around the theory of primitive forms which currently plays an active and key role in topological field theory (theoretical physics), but was originally developed as a mathematical notion to define a "good period mapping" for a family of analytic structures.
The invited papers in this volume are expository in nature by participants of the Taniguchi Symposium on "Topological Field Theory, Primitive...
As the interaction of mathematics and theoretical physics continues to intensify, the theories developed in mathematics are being applied to physic...
A pro-p group is the inverse limit of some system of finite p-groups, that is, of groups of prime-power order where the prime - conventionally denoted p - is fixed. Thus from one point of view, to study a pro-p group is the same as studying an infinite family of finite groups; but a pro-p group is also a compact topological group, and the compactness works its usual magic to bring 'infinite' problems down to manageable proportions. The p-adic integers appeared about a century ago, but the systematic study of pro-p groups in general is a fairly recent development. Although much has been dis...
A pro-p group is the inverse limit of some system of finite p-groups, that is, of groups of prime-power order where the prime - conventionally denoted...
In recent years, it has become increasingly clear that there are important connections relating three concepts -- groupoids, inverse semigroups, and operator algebras. There has been a great deal of progress in this area over the last two decades, and this book gives a careful, up-to-date and reasonably extensive account of the subject matter.
After an introductory first chapter, the second chapter presents a self-contained account of inverse semigroups, locally compact and r-discrete groupoids, and Lie groupoids. The section on Lie groupoids in chapter 2 contains a detailed...
In recent years, it has become increasingly clear that there are important connections relating three concepts -- groupoids, inverse semigroups, an...