In this book, the basic notions and tools of unimodality as they relate to probability and statistics are presented. In addition, many applications are covered; these include the use of unimodality to obtain monotonicity properties of power functions of multivariate tests, minimum volume confidence regions, and recurrence of symmetric random walks. The diversity of the applications will convince the reader that unimodality and convexity form an important tool in the hands of a researcher in probability and statistics.
In this book, the basic notions and tools of unimodality as they relate to probability and statistics are presented. In addition, many applications ar...
The ideas of Fourier have made their way into every branch of mathematics and mathematical physics, from the theory of numbers to quantum mechanics. Fourier Series and Integrals focuses on the extraordinary power and flexibility of Fourier's basic series and integrals and on the astonishing variety of applications in which it is the chief tool. It presents a mathematical account of Fourier ideas on the circle and the line, on finite commutative groups, and on a few important noncommutative groups. A wide variety of exercises are placed in nearly every section as an integral part of the...
The ideas of Fourier have made their way into every branch of mathematics and mathematical physics, from the theory of numbers to quantum mechanics. <...
Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism. Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles. The first two chapters...
Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work ...
Multivariate Analysis deals with observations on more than one variable where there is some inherent interdependence between the variables. With several texts already available in this area, one may very well enquire of the authors as to the need for yet another book. Most of the available books fall into two categories, either theoretical or data analytic. The present book not only combines the two approaches but it also has been guided by the need to give suitable matter for the beginner as well as illustrating some deeper aspects of the subject for the research worker. Practical...
Multivariate Analysis deals with observations on more than one variable where there is some inherent interdependence between the variables. Wit...
The material in this book is designed for a standard graduate course on probability theory, including some important applications. It was prepared from the sets of lecture notes for a course that I have taught several times over the past 20 years. The present version reflects the reactions of my audiences as well as some of the textbooks that I used.
The material in this book is designed for a standard graduate course on probability theory, including some important applications. It was prepared fro...