The problems of modern society are complex, interdisciplinary and nonlin ear. onlinear problems are therefore abundant in several diverse disciplines. Since explicit analytic solutions of nonlinear problems in terms of familiar, well trained functions of analysis are rarely possible, one needs to exploit various approximate methods. There do exist a number of powerful procedures for ob taining approximate solutions of nonlinear problems such as, Newton-Raphson method, Galerkins method, expansion methods, dynamic programming, itera tive techniques, truncation methods, method of upper and lower...
The problems of modern society are complex, interdisciplinary and nonlin ear. onlinear problems are therefore abundant in several diverse disciplines....
This book represents the first attempt at a unified picture for the pres- ence of the Gibbs (or Gibbs-Wilbraham) phenomenon in applications, its analysis and the different methods of filtering it out. The analysis and filtering cover the familiar Gibbs phenomenon in Fourier series and integral representations of functions with jump discontinuities. In ad- dition it will include other representations, such as general orthogonal series expansions, general integral transforms, splines approximation, and continuous as well as discrete wavelet approximations. The mate- rial in this book is...
This book represents the first attempt at a unified picture for the pres- ence of the Gibbs (or Gibbs-Wilbraham) phenomenon in applications, its analy...
One ofthe most important features of the development of physical and mathematical sciences in the beginning of the 20th century was the demolition of prevailing views of the three-dimensional Euclidean space as the only possible mathematical description of real physical space. Apriorization of geometrical notions and identification of physical 3 space with its mathematical modellR were characteristic for these views. The discovery of non-Euclidean geometries led mathematicians to the understanding that Euclidean geometry is nothing more than one of many logically admissible geometrical...
One ofthe most important features of the development of physical and mathematical sciences in the beginning of the 20th century was the demolition of ...
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula...
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. So...
The theory of U-statistics goes back to the fundamental work of Hoeffding 1], in which he proved the central limit theorem. During last forty years the interest to this class of random variables has been permanently increasing, and thus, the new intensively developing branch of probability theory has been formed. The U-statistics are one of the universal objects of the modem probability theory of summation. On the one hand, they are more complicated "algebraically" than sums of independent random variables and vectors, and on the other hand, they contain essential elements of dependence...
The theory of U-statistics goes back to the fundamental work of Hoeffding 1], in which he proved the central limit theorem. During last forty years t...
Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential...
Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE...
The object of this book is to present the basic facts of convex functions, standard dynamical systems, descent numerical algorithms and some computer programs on Riemannian manifolds in a form suitable for applied mathematicians, scientists and engineers. It contains mathematical information on these subjects and applications distributed in seven chapters whose topics are close to my own areas of research: Metric properties of Riemannian manifolds, First and second variations of the p-energy of a curve; Convex functions on Riemannian manifolds; Geometric examples of convex functions; Flows,...
The object of this book is to present the basic facts of convex functions, standard dynamical systems, descent numerical algorithms and some computer ...
This monograph contains an exposition of the theory of minimal surfaces in Euclidean space, with an emphasis on complete minimal surfaces of finite total curvature. Our exposition is based upon the philosophy that the study of finite total curvature complete minimal surfaces in R3, in large measure, coincides with the study of meromorphic functions and linear series on compact Riemann sur- faces. This philosophy is first indicated in the fundamental theorem of Chern and Osserman: A complete minimal surface M immersed in R3 is of finite total curvature if and only if M with its induced...
This monograph contains an exposition of the theory of minimal surfaces in Euclidean space, with an emphasis on complete minimal surfaces of finite to...
1. Preliminaries, Notation, and Terminology n n 1.1. Sets and functions in lR. * Throughout the book, lR. stands for the n-dimensional arithmetic space of points x = (X},X2,'" ,xn)j Ixl is the length of n n a vector x E lR. and (x, y) is the scalar product of vectors x and y in lR. , i.e., for x = (Xl, X2, *.* , xn) and y = (y}, Y2,**., Yn), Ixl = Jx~ + x~ + ...+ x~, (x, y) = XIYl + X2Y2 + ...+ XnYn. n Given arbitrary points a and b in lR. , we denote by [a, b] the segment that joins n them, i.e. the collection of points x E lR. of the form x = >.a + I'b, where>. + I' = 1 and >. ~ 0, I' ~ O....
1. Preliminaries, Notation, and Terminology n n 1.1. Sets and functions in lR. * Throughout the book, lR. stands for the n-dimensional arithmetic spac...
A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups...
A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in s...