This text presents methods of modern set theory as tools that can be usefully applied to other areas of mathematics. The author describes numerous applications in abstract geometry and real analysis and, in some cases, in topology and algebra. The book begins with a tour of the basics of set theory, culminating in a proof of Zorn's Lemma and a discussion of some of its applications. The author then develops the notions of transfinite induction and descriptive set theory, with applications to the theory of real functions. The final part of the book presents the tools of "modern" set theory:...
This text presents methods of modern set theory as tools that can be usefully applied to other areas of mathematics. The author describes numerous app...
In its first six chapters, this text presents the basic ideas and properties of the Jacobi elliptic functions as a historical essay. Accordingly, it is based on the idea of inverting integrals which arise in the theory of differential equations and, in particular, the differential equation that describes the motion of a simple pendulum. The later chapters present a more conventional approach to the Weierstrass functions and to elliptic integrals, and the reader is introduced to the richly varied applications of the elliptic and related functions.
In its first six chapters, this text presents the basic ideas and properties of the Jacobi elliptic functions as a historical essay. Accordingly, it i...
This book is an introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. The authors provide a number of applications, principally to number theory and arithmetic progressions (through Van der Waerden's theorem and Szemerdi's theorem). This text is suitable for advanced undergraduate and beginning graduate students.
This book is an introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention t...
This text is a self-contained study of expander graphs, specifically, their explicit construction. Expander graphs are highly connected but sparse, and while being of interest within combinatorics and graph theory, they can also be applied to computer science and engineering. Only a knowledge of elementary algebra, analysis and combinatorics is required because the authors provide the necessary background from graph theory, number theory, group theory and representation theory. Thus the text can be used as a brief introduction to these subjects and their synthesis in modern mathematics.
This text is a self-contained study of expander graphs, specifically, their explicit construction. Expander graphs are highly connected but sparse, an...
Beginning with a brief introduction to algorithms and diophantine equations, this volume provides a coherent modern account of the methods used to find all the solutions to certain diophantine equations, particularly those developed for use on a computer. The study is divided into three parts, emphasizing approaches with a wide range of applications. The first section considers basic techniques including local methods, sieving, descent arguments and the LLL algorithm. The second section explores problems that can be solved using Baker's theory of linear forms in logarithms. The final section...
Beginning with a brief introduction to algorithms and diophantine equations, this volume provides a coherent modern account of the methods used to fin...
The focus of this book is the study of the noncommutative aspects of rings and modules, and the style will make it accessible to anyone with a background in basic abstract algebra. Features of interest include an early introduction of projective and injective modules; a module theoretic approach to the Jacobson radical and the Artin-Wedderburn theorem; the use of Baer's criterion for injectivity to prove the structure theorem for finitely generated modules over a principal ideal domain; and applications of the general theory to the representation theory of finite groups. Optional material...
The focus of this book is the study of the noncommutative aspects of rings and modules, and the style will make it accessible to anyone with a backgro...
Philosophical considerations, which are often ignored or treated casually, are given careful consideration in this introduction. Thomas Forster places the notion of inductively defined sets (recursive datatypes) at the center of his exposition resulting in an original analysis of well established topics. The presentation illustrates difficult points and includes many exercises. Little previous knowledge of logic is required and only a knowledge of standard undergraduate mathematics is assumed.
Philosophical considerations, which are often ignored or treated casually, are given careful consideration in this introduction. Thomas Forster places...
Permutation groups are one of the oldest topics in algebra. Their study has recently been revolutionized by new developments, particularly the Classification of Finite Simple Groups, but also relations with logic and combinatorics, and importantly, computer algebra systems have been introduced that can deal with large permutation groups. This text summarizes these developments, including an introduction to relevant computer algebra systems, sketch proofs of major theorems, and many examples of applying the Classification of Finite Simple Groups. It is aimed at beginning graduate students and...
Permutation groups are one of the oldest topics in algebra. Their study has recently been revolutionized by new developments, particularly the Classif...
This book is based on a graduate course taught by the author at the University of Maryland. The lecture notes have been revised and augmented by examples. The first two chapters develop the elementary theory of Artin Braid groups, both geometrically and via homotopy theory, and discuss the link between knot theory and the combinatorics of braid groups through Markou's Theorem. The final two chapters give a detailed investigation of polynomial covering maps, which may be viewed as a homomorphism of the fundamental group of the base space into the Artin Braid group on n strings.
This book is based on a graduate course taught by the author at the University of Maryland. The lecture notes have been revised and augmented by examp...
This outstanding new book presents the modern, geometric approach to group theory, in an accessible and engaging approach to the subject. Topics include group actions, the construction of Cayley graphs, and connections to formal language theory and geometry. Theorems are balanced by specific examples such as Baumslag-Solitar groups, the Lamplighter group and Thompson's group. Only exposure to undergraduate-level abstract algebra is presumed, and from that base the core techniques and theorems are developed and recent research is explored. Exercises and figures throughout the text encourage...
This outstanding new book presents the modern, geometric approach to group theory, in an accessible and engaging approach to the subject. Topics inclu...