The coclass project (1980-1994) provided a new and powerful way to classify finite p-groups. This monograph gives a coherent account of the thinking out of which developed the philosophy that lead to this classification. The authors provide a careful summary and explanation of the many and difficult original research papers on the coclass conjecture and the structure theorem, thus elucidating the background research for those new to the area as well as for experienced researchers. The classification philosophy has lead to many new and challenging problems. Amongst those considered are...
The coclass project (1980-1994) provided a new and powerful way to classify finite p-groups. This monograph gives a coherent account of the thinking o...
Rapid developments in multivariable spectral theory have led to important and fascinating results which also have applications in other mathematical disciplines. In this book, various concepts from function theory and complex analytic geometry are drawn together to give a new approach to concrete spectral computations and give insights into new developments in the spectral theory of linear operators. Classical results from cohomology theory of Banach algebras, multidimensional spectral theory, and complex analytic geometry have been freshly interpreted using the language of homological...
Rapid developments in multivariable spectral theory have led to important and fascinating results which also have applications in other mathematical d...
Super-fields are a class of totally ordered fields that are larger than the real line. They arise from quotients of the algebra of continuous functions on a compact space by a prime ideal, and generalize the well-known class of ultrapowers, and indeed the continuous ultrapowers. These fields are an important topic in their own right and have many surprising applications in analysis and logic. The authors introduce these exciting new fields to mathematicians, analysts, and logicians, including a natural generalization of the real line R, and resolve a number of open problems. After an...
Super-fields are a class of totally ordered fields that are larger than the real line. They arise from quotients of the algebra of continuous function...
This is the first comprehensive reference published on heat equations associated with non self-adjoint uniformly elliptic operators. The author provides introductory materials for those unfamiliar with the underlying mathematics and background needed to understand the properties of heat equations. He then treats Lp properties of solutions to a wide class of heat equations that have been developed over the last fifteen years. These primarily concern the interplay of heat equations in functional analysis, spectral theory and mathematical physics.
This book...
This is the first comprehensive reference published on heat equations associated with non self-adjoint uniformly elliptic operators. The author pro...
This book seeks to describe the rapid development in recent decades of sieve methods able to detect prime numbers. The subject began with Eratosthenes in antiquity, took on new shape with Legendre's form of the sieve, was substantially reworked by Ivan M. Vinogradov and Yuri V. Linnik, but came into its own with Robert C. Vaughan and important contributions from others, notably Roger Heath-Brown and Henryk Iwaniec. Prime-Detecting Sieves breaks new ground by bringing together several different types of problems that have been tackled with modern sieve methods and by discussing the...
This book seeks to describe the rapid development in recent decades of sieve methods able to detect prime numbers. The subject began with Eratosthe...
Many of the familiar integrable systems of equations are symmetry reductions of self-duality equations on a metric or on a Yang-Mills connection. For example, the Korteweg-de Vries and non-linear Schrodinger equations are reductions of the self-dual Yang-Mills equation. This book explores in detail the connections between self-duality and integrability, and also the application of twistor techniques to integrable systems. It supports two central theories: that the symmetries of self-duality equations provide a natural classification scheme for integrable systems; and that twistor theory...
Many of the familiar integrable systems of equations are symmetry reductions of self-duality equations on a metric or on a Yang-Mills connection. For ...
In this important and original monograph, useful for both academic and professional researchers and students of mathematics and physics, the author describes his work on the Riemann zeta function and its adelic interpretation. It provides an original point of view, bringing new, highly useful dictionaries between different fields of mathematics. It develops an arithmetical approach to the continuum of real numbers and unifies many areas of mathematics including: Markov Chains, q-series, Elliptic curves, the Heisenberg group, quantum groups, and special functions (such as the Gamma, Beta,...
In this important and original monograph, useful for both academic and professional researchers and students of mathematics and physics, the author de...
There are many types of infinite-dimensional groups, most of which have been studied separately from each other since the 1950s. It is now possible to fit these apparently disparate groups into one coherent picture. With the first explicit construction of hidden structures (mantles and trains), Neretin is able to show how many infinite-dimensional groups are in fact only a small part of a much larger object, analogous to the way real numbers are embedded within complex numbers.
There are many types of infinite-dimensional groups, most of which have been studied separately from each other since the 1950s. It is now possible to...
Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials.
Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical...
Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices...
This book gives a comprehensive and self-contained introduction to the theory of symmetric Markov processes and symmetric quasi-regular Dirichlet forms. In a detailed and accessible manner, Zhen-Qing Chen and Masatoshi Fukushima cover the essential elements and applications of the theory of symmetric Markov processes, including recurrence/transience criteria, probabilistic potential theory, additive functional theory, and time change theory. The authors develop the theory in a general framework of symmetric quasi-regular Dirichlet forms in a unified manner with that of regular Dirichlet...
This book gives a comprehensive and self-contained introduction to the theory of symmetric Markov processes and symmetric quasi-regular Dirichlet f...