This book develops a new theory in convex geometry, generalizing positive bases and related to Carathéordory’s Theorem by combining convex geometry, the combinatorics of infinite subsets of lattice points, and the arithmetic of transfer Krull monoids (the latter broadly generalizing the ubiquitous class of Krull domains in commutative algebra)This new theory is developed in a self-contained way with the main motivation of its later applications regarding factorization. While factorization into irreducibles, called atoms, generally fails to be unique, there are various measures of how badly...
This book develops a new theory in convex geometry, generalizing positive bases and related to Carathéordory’s Theorem by combining convex geometry...
This book is essentially a survey of results on the Fuglede-Putnam theorem and its generalizations in a wide variety of directions. Presenting a broad overview of the results obtained in the field since the early 1950s, this is the first monograph to be dedicated to this powerful tool and its variants.Starting from historical notes and classical versions with their different proofs, the book then explores asymptotic versions, generalizations to non-normal operators, generalizations to unbounded operators, counterexamples, applications, intertwining relations, and conjectures. A rich...
This book is essentially a survey of results on the Fuglede-Putnam theorem and its generalizations in a wide variety of directions. Presenting a broad...
This book provides an accessible overview concerning the stochastic numerical methods inheriting long-time dynamical behaviours of finite and infinite-dimensional stochastic Hamiltonian systems. The long-time dynamical behaviours under study involve symplectic structure, invariants, ergodicity and invariant measure. The emphasis is placed on the systematic construction and the probabilistic superiority of stochastic symplectic methods, which preserve the geometric structure of the stochastic flow of stochastic Hamiltonian systems.The problems considered in this book are related to several...
This book provides an accessible overview concerning the stochastic numerical methods inheriting long-time dynamical behaviours of finite and infinite...
This volume is an original collection of articles by 44 leading mathematicians on the theme of the future of the discipline. The contributions range from musings on the future of specific fields, to analyses of the history of the discipline, to discussions of open problems and conjectures, including first solutions of unresolved problems. Interestingly, the topics do not cover all of mathematics, but only those deemed most worthy to reflect on for future generations. These topics encompass the most active parts of pure and applied mathematics, including algebraic geometry, probability,...
This volume is an original collection of articles by 44 leading mathematicians on the theme of the future of the discipline. The contributions range...
This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that...
This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The...
This book is about extending index theory to some examples where non-Fredholm operators arise. It focuses on one aspect of the problem of what replaces the notion of spectral flow and the Fredholm index when the operators in question have zero in their essential spectrum. Most work in this topic stems from the so-called Witten index that is discussed at length here. The new direction described in these notes is the introduction of `spectral flow beyond the Fredholm case'.Creating a coherent picture of numerous investigations and scattered notions of the past 50 years, this work carefully...
This book is about extending index theory to some examples where non-Fredholm operators arise. It focuses on one aspect of the problem of what replace...