This book provides an overview of some of the most active topics in the theory of transformation groups over the past decades and stresses advances obtained in the last dozen years. The emphasis is on actions of Lie groups on manifolds and CW complexes. Manifolds and actions of Lie groups on them are studied in the linear, semialgebraic, definable, analytic, smooth, and topological categories. Equivalent vector bundles play an important role.
The work is divided into fifteen articles and will be of interest to anyone researching or studying transformations groups. The references...
This book provides an overview of some of the most active topics in the theory of transformation groups over the past decades and stresses advances...
This book deals with algebraic topology, homotopy theory and simple homotopy theory of infinite CW-complexes with ends. Contrary to most other works on these subjects, the current volume does not use inverse systems to treat these topics. Here, the homotopy theory is approached without the rather sophisticated notion of pro-category. Spaces with ends are studied only by using appropriate constructions such as spherical objects of CW-complexes in the category of spaces with ends, and all arguments refer directly to this category. In this way, infinite homotopy theory is presented as a ...
This book deals with algebraic topology, homotopy theory and simple homotopy theory of infinite CW-complexes with ends. Contrary to most other works ...