Exploration of Visual Data presents latest research efforts in the area of content-based exploration of image and video data. The main objective is to bridge the semantic gap between high-level concepts in the human mind and low-level features extractable by the machines.
The two key issues emphasized are "content-awareness" and "user-in-the-loop." The authors provide a comprehensive review on algorithms for visual feature extraction based on color, texture, shape, and structure, and techniques for incorporating such information to aid browsing, exploration, search,...
Exploration of Visual Data presents latest research efforts in the area of content-based exploration of image and video data. The ...
Traditionally, scientific fields have defined boundaries, and scientists work on research problems within those boundaries. However, from time to time those boundaries get shifted or blurred to evolve new fields. For instance, the original goal of computer vision was to understand a single image of a scene, by identifying objects, their structure, and spatial arrangements. This has been referred to as image understanding. Recently, computer vision has gradually been making the transition away from understanding single images to analyz- ing image sequences, or video understanding. Video...
Traditionally, scientific fields have defined boundaries, and scientists work on research problems within those boundaries. However, from time to time...
Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss...
Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applicat...
Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss...
Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applicat...
Over the last several years there has been a growing interest in developing computational methodologies for modeling and analyzing movements and behaviors of 'crowds' of people. This interest spans several scientific areas that includes Computer Vision, Computer Graphics, and Pedestrian Evacuation Dynamics. Despite the fact that these different scientific fields are trying to model the same physical entity (i.e. a crowd of people), research ideas have evolved independently. As a result each discipline has developed techniques and perspectives that are characteristically their own....
Over the last several years there has been a growing interest in developing computational methodologies for modeling and analyzing movements and be...