This textbook presents various methods to deal with quantum many-body systems, mainly addressing interacting electrons. It focusses on basic tools to tackle quantum effects in macroscopic systems of interacting particles, and on fundamental concepts to interpret the behavior of such systems as revealed by experiments.
The textbook starts from simple concepts like second quantization, which allows one to include the indistinguishability and statistics of particles in a rather simple framework, and linear response theory. Then, it gradually moves towards more technical and advanced...
This textbook presents various methods to deal with quantum many-body systems, mainly addressing interacting electrons. It focusses on basic tools ...
This textbook presents the principles and methods for the measurement of radioactivity in the environment. In this regard, specific low-level radiation counting and spectrometry or mass spectrometry techniques are discussed, including sources, distribution, levels and dynamics of radioactivity in nature. The author gives an accurate description of the fundamental concepts and laws of radioactivity as well as the different types of detectors and mass spectrometers needed for detection. Special attention is paid to scintillators, semiconductor detectors, and gas ionization detectors. In order...
This textbook presents the principles and methods for the measurement of radioactivity in the environment. In this regard, specific low-level radiatio...
This textbook gradually introduces the reader to several topics related to black hole physics with a didactic approach. It starts with the most basic black hole solution, the Schwarzschild metric, and discusses the basic classical properties of black hole solutions as seen by different probes. Then it reviews various theorems about black hole properties as solutions to Einstein gravity coupled to matter fields, conserved charges associated with black holes, and laws of black hole thermodynamics. Next, it elucidates semiclassical and quantum aspects of black holes, which are relevant in...
This textbook gradually introduces the reader to several topics related to black hole physics with a didactic approach. It starts with the most bas...
This book provides an introduction to classical celestial mechanics. It is based on lectures delivered by the authors over many years at both Padua University (MC) and V.N. Karazin Kharkiv National University (EB). The book aims to provide a mathematical description of the gravitational interaction of celestial bodies. The approach to the problem is purely formal. It allows the authors to write equations of motion and solve them to the greatest degree possible, either exactly or by approximate techniques, when there is no other way. The results obtained provide predictions that can be...
This book provides an introduction to classical celestial mechanics. It is based on lectures delivered by the authors over many years at both Padua Un...
This book is a pedagogical introduction to quantum field theory, suitable for a students’ first exposure to the subject. It assumes a minimal amount of technical background and it is intended to be accessible to a wide audience including students of theoretical and experimental high energy physics, condensed matter, optical, atomic, nuclear and gravitational physics and astrophysics. It includes a thorough development of second quantization and the field theoretic approach to nonrelativistic many-body physics as a step in developing a broad-based working knowledge of the basic aspects of...
This book is a pedagogical introduction to quantum field theory, suitable for a students’ first exposure to the subject. It assumes a minimal amo...
This book, the first in a three-volume set, explains general relativity using the mathematical tool of differential geometry. The book consists of ten chapters, the first five of which introduce differential geometry, which is widely applicable even outside the field of relativity. Chapter 6 analyzes special relativity using geometric language. In turn, the last four chapters introduce readers to the fundamentals of general relativity. Intended for beginners, this volume includes numerous exercises and worked-out example in each chapter to facilitate the learning experience. Chiefly...
This book, the first in a three-volume set, explains general relativity using the mathematical tool of differential geometry. The book consists of ...
This textbook provides a thorough explanation of the physical concepts and presents the general theory of different forms through approximations of the neutron transport processes in nuclear reactors and emphasize the numerical computing methods that lead to the prediction of neutron behavior.
Detailed derivations and thorough discussions are the prominent features of this book unlike the brevity and conciseness which are the characteristic of most available textbooks on the subject where students find them difficult to follow. This conclusion has been reached from the experience...
This textbook provides a thorough explanation of the physical concepts and presents the general theory of different forms through approximations of...
This book provides an introduction to and an overview of the multifaceted area of dynamics and nonlinearities related to optical excitations in semiconductors. It is a revised and significantly extended edition of the well-established book by C. Klingshirn split into two volumes and restructured to make it more concise. Inserts on important experimental techniques, reference to topical research and novel materials, as well as consideration of photonic applications support research-oriented teaching and learning.
This book reviews nonlinear optical properties and...
This book provides an introduction to and an overview of the multifaceted area of dynamics and nonlinearities related to optical excitations in semico...