This textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory.
After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are...
This textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory.
This self-contained text introduces Euclidean Fourier Analysis to graduate students who have completed courses in Real Analysis and Complex Variables. It provides sufficient content for a two course sequence in Fourier Analysis or Harmonic Analysis at the graduate level. In true pedagogical spirit, each chapter presents a valuable selection of exercises with targeted hints that will assist the reader in the development of research skills. Proofs are presented with care and attention to detail. Examples are provided to enrich understanding and improve overall comprehension of the...
This self-contained text introduces Euclidean Fourier Analysis to graduate students who have completed courses in Real Analysis and Complex Varia...