"A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic material in differential topology, as far as is accessible without the methods of algebraic topology....There is an abundance of exercises, which supply many beautiful examples and much interesting additional information, and help the reader to become thoroughly familiar with the material of the main text." -MATHEMATICAL REVIEWS
"A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic materia...
This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare 77] and Thurston 101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo-...
This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has n...
It is gratifying that this textbook is still sufficiently popular to warrant a third edition. I have used the opportunity to improve and enlarge the book. When the second edition was prepared, only two pages on algebraic geometry codes were added. These have now been removed and replaced by a relatively long chapter on this subject. Although it is still only an introduction, the chapter requires more mathematical background of the reader than the remainder of this book. One of the very interesting recent developments concerns binary codes defined by using codes over the alphabet 7l.4- There...
It is gratifying that this textbook is still sufficiently popular to warrant a third edition. I have used the opportunity to improve and enlarge the b...
With the advent of powerful computing tools and numerous advances in math- ematics, computer science and cryptography, algorithmic number theory has become an important subject in its own right. Both external and internal pressures gave a powerful impetus to the development of more powerful al- gorithms. These in turn led to a large number of spectacular breakthroughs. To mention but a few, the LLL algorithm which has a wide range of appli- cations, including real world applications to integer programming, primality testing and factoring algorithms, sub-exponential class group and regulator...
With the advent of powerful computing tools and numerous advances in math- ematics, computer science and cryptography, algorithmic number theory has b...
It is not a large overstatement to claim that mathematics has traditionally arisen from attempts to understand quite concrete events in the physical world. The accelerated sophistication of the mathematical community has perhaps obscured this fact, especially during the present century, with the abstract becoming the hallmark of much of respectable mathematics. As a result of the inaccessibility of such work, practicing scientists have often been compelled to fashion their own mathematical tools, blissfully unaware of their prior existence in far too elegant and far too general form. But the...
It is not a large overstatement to claim that mathematics has traditionally arisen from attempts to understand quite concrete events in the physical w...
This is a textbook for a one semester course on numerical analysis for senior undergraduate or beginning graduate students with no previous knowledge of the subject. The prerequisites are calculus, some knowledge of ordinary differential equations, and knowledge of computer programming using Fortran. Normally this should be half of a two semester course, the other semester covering numerical solution of linear systems, inversion of matrices and roots of polynomials. Neither semester should be a prerequisite for the other. This would prepare the student for advanced topics on numerical...
This is a textbook for a one semester course on numerical analysis for senior undergraduate or beginning graduate students with no previous knowledge ...
This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and...
This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with em...
Once upon a time students of mathematics and students of science or engineering took the same courses in mathematical analysis beyond calculus. Now it is common to separate" advanced mathematics for science and engi- neering" from what might be called "advanced mathematical analysis for mathematicians." It seems to me both useful and timely to attempt a reconciliation. The separation between kinds of courses has unhealthy effects. Mathe- matics students reverse the historical development of analysis, learning the unifying abstractions first and the examples later (if ever). Science students...
Once upon a time students of mathematics and students of science or engineering took the same courses in mathematical analysis beyond calculus. Now it...
This book aims to present to first and second year graduate students a beautiful and relatively accessible field of mathematics-the theory of singu- larities of stable differentiable mappings. The study of stable singularities is based on the now classical theories of Hassler Whitney, who determined the generic singularities (or lack of them) of Rn Rm (m 2n - 1) and R2 R2, and Marston Morse, for mappings who studied these singularities for Rn R. It was Rene Thorn who noticed (in the late '50's) that all of these results could be incorporated into one theory. The 1960 Bonn notes of Thom and...
This book aims to present to first and second year graduate students a beautiful and relatively accessible field of mathematics-the theory of singu- l...