Evolutionary Algorithms for Embedded System Design describes how Evolutionary Algorithm (EA) concepts can be applied to circuit and system design - an area where time-to-market demands are critical. EAs create an interesting alternative to other approaches since they can be scaled with the problem size and can be easily run on parallel computer systems. This book presents several successful EA techniques and shows how they can be applied at different levels of the design process. Starting on a high-level abstraction, where software components are dominant, several...
Evolutionary Algorithms for Embedded System Design describes how Evolutionary Algorithm (EA) concepts can be applied to circuit an...
Noise is a common factor in most real-world optimization problems. Sources of noise can include physical measurement limitations, stochastic simulation models, incomplete sampling of large spaces, and human-computer interaction. Evolutionary algorithms are general, nature-inspired heuristics for numerical search and optimization that are frequently observed to be particularly robust with regard to the effects of noise.
Noisy Optimization with Evolution Strategies contributes to the understanding of evolutionary optimization in the presence of noise by investigating...
Noise is a common factor in most real-world optimization problems. Sources of noise can include physical measurement limitations, stochastic simula...
Estimation of Distribution Algorithms: A New Tool for EvolutionaryComputation is devoted to a new paradigm for evolutionary computation, named estimation of distribution algorithms (EDAs). This new class of algorithms generalizes genetic algorithms by replacing the crossover and mutation operators with learning and sampling from the probability distribution of the best individuals of the population at each iteration of the algorithm. Working in such a way, the relationships between the variables involved in the problem domain are explicitly and effectively captured and...
Estimation of Distribution Algorithms: A New Tool for EvolutionaryComputation is devoted to a new paradigm for evolutionary computa...
As genetic algorithms (GAs) become increasingly popular, they are applied to difficult problems that may require considerable computations. In such cases, parallel implementations of GAs become necessary to reach high-quality solutions in reasonable times. But, even though their mechanics are simple, parallel GAs are complex non-linear algorithms that are controlled by many parameters, which are not well understood. Efficient and Accurate Parallel Genetic Algorithms is about the design of parallel GAs. It presents theoretical developments that improve our understanding of the...
As genetic algorithms (GAs) become increasingly popular, they are applied to difficult problems that may require considerable computations. In such ca...
Frontiers of Evolutionary Computation brings together eleven contributions by international leading researchers discussing what significant issues still remain unresolved in the field of Evolutionary Computation (EC). They explore such topics as the role of building blocks, the balancing of exploration with exploitation, the modeling of EC algorithms, the connection with optimization theory and the role of EC as a meta-heuristic method, to name a few. The articles feature a mixture of informal discussion interspersed with formal statements, thus providing the reader an...
Frontiers of Evolutionary Computation brings together eleven contributions by international leading researchers discussing what si...