This book is a comprehensive study of the Radon transform, which operates on a function by integrating it over hyperplanes. The book begins with an elementary and graphical introduction to the Radon transform, tomography and CT scanners, followed by a rigorous development of the basic properties of the Radon transform. Next the author introduces Grassmann manifolds in the study of the k-plane transform (a version of the Radon transform) which integrates over k-dimensional planes rather than hyperplanes. The remaining chapters are concerned with more advanced topics.
This book is a comprehensive study of the Radon transform, which operates on a function by integrating it over hyperplanes. The book begins with an el...
This book is both an introduction to K-theory and a text in algebra. These two roles are entirely compatible. On the one hand, nothing more than the basic algebra of groups, rings, and modules is needed to explain the clasical algebraic K-theory. On the other hand, K-theory is a natural organizing principle for the standard topics of a second course in algebra, and these topics are presented carefully here. The reader will not only learn algebraic K-theory, but also Dedekind domains, class groups, semisimple rings, character theory, quadratic forms, tensor products, localization, completion,...
This book is both an introduction to K-theory and a text in algebra. These two roles are entirely compatible. On the one hand, nothing more than the b...
The rapidly expanding area of algebraic graph theory uses two different branches of algebra to explore various aspects of graph theory: linear algebra (for spectral theory) and group theory (for studying graph symmetry). These areas have links with other areas of mathematics, such as logic and harmonic analysis, and are increasingly being used in such areas as computer networks where symmetry is an important feature. Other books cover portions of this material, but this book is unusual in covering both of these aspects and there are no other books with such a wide scope. Peter J. Cameron,...
The rapidly expanding area of algebraic graph theory uses two different branches of algebra to explore various aspects of graph theory: linear algebra...
Stochastic processes with jumps and random measures are gaining importance as drivers in applications like financial mathematics and signal processing. This book develops stochastic integration theory for both integrators (semimartingales) and random measures from a common point of view. Using some novel predictable controlling devices, the author furnishes the theory of stochastic differential equations driven by them, as well as their stability and numerical approximation theories. Highlights feature DCT and Egoroff's Theorem, as well as comprehensive analogs to results from ordinary...
Stochastic processes with jumps and random measures are gaining importance as drivers in applications like financial mathematics and signal processing...
Combinatorics on words has arisen independently within several branches of mathematics, for instance, number theory, group theory and probability, and appears frequently in problems related to theoretical computer science. The first unified treatment of the area was given in Lothaire's Combinatorics on Words. Since its publication, the area has developed and the authors now aim to present several more topics as well as giving deeper insights into subjects that were discussed in the previous volume. An introductory chapter provides the reader with all the necessary background material. There...
Combinatorics on words has arisen independently within several branches of mathematics, for instance, number theory, group theory and probability, and...
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. The rapid development of the subject in the past twenty years has resulted in a rich new theory featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. This is the first comprehensive, up-to-date account of the subject and its ramifications. It meets a critical need for such a text, because no book has been published in this area since Coxeter's "Regular Polytopes" (1948) and "Regular...
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. The r...
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book...
Methods from contact and symplectic geometry can be used to solve highly non-trivial nonlinear partial and ordinary differential equations without resorting to approximate numerical methods or algebraic computing software. This book explains how it's done. It combines the clarity and accessibility of an advanced textbook with the completeness of an encyclopedia. The basic ideas that Lie and Cartan developed at the end of the nineteenth century to transform solving a differential equation into a problem in geometry or algebra are here reworked in a novel and modern way. Differential equations...
Methods from contact and symplectic geometry can be used to solve highly non-trivial nonlinear partial and ordinary differential equations without res...
Many infinite-dimensional linear systems can be modelled in a Hilbert space setting. Others, such as those dealing with heat transfer or population dynamics, need to be set more generally in Banach spaces. This is the first book dealing with well-posed infinite-dimensional linear systems with an input, a state, and an output in a Hilbert or Banach space setting. It is also the first to describe the class of non-well-posed systems induced by system nodes. The author shows how standard finite-dimensional results from systems theory can be extended to these more general classes of systems, and...
Many infinite-dimensional linear systems can be modelled in a Hilbert space setting. Others, such as those dealing with heat transfer or population dy...
Joussef Jabri presents min-max methods through a comprehensive study of the different faces of the celebrated Mountain Pass Theorem (MPT) of Ambrosetti and Rabinowitz. Jabri clarifies the extensions and variants of the MPT in a complete and unified way and covers standard topics: the classical and dual MPT; second-order information from PS sequences; symmetry and topological index theory; perturbations from symmetry; convexity and more. He also covers the non-smooth MPT; the geometrically constrained MPT; numerical approaches to the MPT; and even more exotic variants. A bibliography and...
Joussef Jabri presents min-max methods through a comprehensive study of the different faces of the celebrated Mountain Pass Theorem (MPT) of Ambrosett...