Introduction In the present essay, we attempt to convey some idea of the skeleton of topology, and of various topological concepts. It must be said at once that, apart from the necessary minimum, the subject-matter of this survey does not indude that subdiscipline known as "general topology" - the theory of general spaces and maps considered in the context of set theory and general category theory. (Doubtless this subject will be surveyed in detail by others. ) With this qualification, it may be daimed that the "topology" dealt with in the present survey is that mathematieal subject whieh in...
Introduction In the present essay, we attempt to convey some idea of the skeleton of topology, and of various topological concepts. It must be said at...
Bifurcation theory and catastrophe theory are two of the best known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Moreover, understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems....
Bifurcation theory and catastrophe theory are two of the best known areas within the field of dynamical systems. Both are studies of smooth systems, f...
From the reviews of the first edition: ..". In general the articles ... are well written in a style that enables one to grasp the ideas. The actual style is a readable mix of the important results, outlines of proofs and complete proofs when it does not take too long together with readable explanations of what is going on. Also very useful are the large lists of references which are important not only for their mathematical content but also because the references given also contain articles in the Soviet literature which may not be familiar or possibly accessible to readers." New...
From the reviews of the first edition: ..". In general the articles ... are well written in a style that enables one to grasp the ideas. The actua...
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event.
Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and...
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combi...
Spaces of constant curvature, i.e. Euclidean space, the sphere, and Loba chevskij space, occupy a special place in geometry. They are most accessible to our geometric intuition, making it possible to develop elementary geometry in a way very similar to that used to create the geometry we learned at school. However, since its basic notions can be interpreted in different ways, this geometry can be applied to objects other than the conventional physical space, the original source of our geometric intuition. Euclidean geometry has for a long time been deeply rooted in the human mind. The same is...
Spaces of constant curvature, i.e. Euclidean space, the sphere, and Loba chevskij space, occupy a special place in geometry. They are most accessible ...
22. K-theory 230 A. Topological X-theory 230 Vector bundles and the functor Vec(X). Periodicity and the functors KJX). K(X) and t the infinite-dimensional linear group. The symbol of an elliptic differential operator. The index theorem. B. Algebraic K-theory 234 The group of classes of projective modules. K, K and K of a ring. K of a field and o l n 2 its relations with the Brauer group. K-theory and arithmetic. Comments on the Literature 239 References 244 Index of Names 249 Subject Index 251 Preface This book aims to present a general survey of algebra, of its basic notions and main...
22. K-theory 230 A. Topological X-theory 230 Vector bundles and the functor Vec(X). Periodicity and the functors KJX). K(X) and t the infinite-dimensi...
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and re...
The notion of uniform hyperbolicity, introduced by Steve Smale in the early sixties, unified important developments and led to a remarkably successful theory for a large class of systems: uniformly hyperbolic systems often exhibit complicated evolution which, nevertheless, is now rather well understood, both geometrically and statistically.
Another revolution has been taking place in the last couple of decades, as one tries to build a global theory for "most" dynamical systems, recovering as much as possible of the conclusions of the uniformly hyperbolic case, in great generality....
The notion of uniform hyperbolicity, introduced by Steve Smale in the early sixties, unified important developments and led to a remarkably success...
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions...
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or tim...
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions...
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or tim...