This volume is an outgrowth of the research project "The Inverse Ga lois Problem and its Application to Number Theory" which was carried out in three academic years from 1999 to 2001 with the support of the Grant-in-Aid for Scientific Research (B) (1) No. 11440013. In September, 2001, an international conference "Galois Theory and Modular Forms" was held at Tokyo Metropolitan University after some preparatory work shops and symposia in previous years. The title of this book came from that of the conference, and the authors were participants of those meet All of the articles here were...
This volume is an outgrowth of the research project "The Inverse Ga lois Problem and its Application to Number Theory" which was carried out in three ...
This volume contains 22 research and survey papers on recent developments in the field of diophantine approximation. The first article by Hans Peter Schlickewei is devoted to the scientific work of Wolfgang Schmidt. Further contributions deal with the subspace theorem and its applications to diophantine equations and to the study of linear recurring sequences. The articles are either in the spirit of more classical diophantine analysis or of geometric or combinatorial flavor. In particular, estimates for the number of solutions of diophantine equations as well as results concerning...
This volume contains 22 research and survey papers on recent developments in the field of diophantine approximation. The first article by Hans Peter S...
Number theory has a wealth of long-standing problems, the study of which over the years has led to major developments in many areas of mathematics. This volume consists of seven significant chapters on number theory and related topics. Written by distinguished mathematicians, key topics focus on multipartitions, congruences and identities (G. Andrews), the formulas of Koshliakov and Guinand in Ramanujan's Lost Notebook (B.C. Berndt, Y. Lee, and J. Sohn), alternating sign matrices and the Weyl character formulas (D.M. Bressoud), theta functions in complex analysis (H.M. Farkas),...
Number theory has a wealth of long-standing problems, the study of which over the years has led to major developments in many areas of mathematics....
The legacy of Galois was the beginning of Galois theory as well as group theory. From this common origin, the development of group theory took its own course, which led to great advances in the latter half of the 20th cen tury. It was John Thompson who shaped finite group theory like no-one else, leading the way towards a major milestone of 20th century mathematics, the classification of finite simple groups. After the classification was announced around 1980, it was again J. Thomp son who led the way in exploring its implications for Galois theory. The first question is whether all simple...
The legacy of Galois was the beginning of Galois theory as well as group theory. From this common origin, the development of group theory took its own...
This book provides a very readable description of a technique, developed by the author years ago but as current as ever, for proving that solutions to certain (non-elliptic) partial differential equations only have real analytic solutions when the data are real analytic (locally). The technique is completely elementary but relies on a construction, a kind of a non-commutative power series, to localize the analysis of high powers of derivatives in the so-called bad direction. It is hoped that this work will permit a far greater audience of researchers to come to a deep understanding of this...
This book provides a very readable description of a technique, developed by the author years ago but as current as ever, for proving that solutions to...
Althoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literature. This text deals with the CR submanifolds of complex manifolds, with particular emphasis on CR submanifolds of complex projective space, and it covers the topics which are necessary for learning the basic properties of these manifolds. We are aware that it is impossible to give a complete overview of these submanifolds, but we hope that these notes can serve as an introduction to their study. We present the fundamental de?nitions and results...
Althoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literat...
Let N be the set of nonnegative integers. A numerical semigroup is a nonempty subset S of N that is closed under addition, contains the zero element, and whose complement in N is ?nite. If n, ..., n are positive integers with gcd{n, ..., n } = 1, then the set hn, ..., 1 e 1 e 1 n i = {? n +... + ? n - ?, ..., ? ? N} is a numerical semigroup. Every numer e 1 1 e e 1 e ical semigroup is of this form. The simplicity of this concept makes it possible to state problems that are easy to understand but whose resolution is far from being trivial. This fact attracted several mathematicians like...
Let N be the set of nonnegative integers. A numerical semigroup is a nonempty subset S of N that is closed under addition, contains the zero element, ...
The legacy of Galois was the beginning of Galois theory as well as group theory. From this common origin, the development of group theory took its own course, which led to great advances in the latter half of the 20th cen tury. It was John Thompson who shaped finite group theory like no-one else, leading the way towards a major milestone of 20th century mathematics, the classification of finite simple groups. After the classification was announced around 1980, it was again J. Thomp son who led the way in exploring its implications for Galois theory. The first question is whether all simple...
The legacy of Galois was the beginning of Galois theory as well as group theory. From this common origin, the development of group theory took its own...
This volume, "Theory and Applications of Special Functions," is d- icated to Mizan Rahman in honoring him for the many important c- tributions to the theory of special functions that he has made over the years, and still continues to make. Some of the papers were presented at a special session of the American Mathematical Society Annual Meeting in Baltimore, Maryland, in January 2003 organized by Mourad Ismail. Mizan Rahman's contributions are not only contained in his own - pers, but also indirectly in other papers for which he supplied useful and often essential information. We refer to the...
This volume, "Theory and Applications of Special Functions," is d- icated to Mizan Rahman in honoring him for the many important c- tributions to the ...
This volume contains papers by invited speakers of the symposium "Zeta Functions, Topology and Quantum Physics" held at Kinki U- versity in Osaka, Japan, during the period of March 3-6, 2003. The aims of this symposium were to establish mutual understanding and to exchange ideas among researchers working in various fields which have relation to zeta functions and zeta values. We are very happy to add this volume to the series Developments in Mathematics from Springer. In this respect, Professor Krishnaswami Alladi helped us a lot by showing his keen and enthusiastic interest in publishing...
This volume contains papers by invited speakers of the symposium "Zeta Functions, Topology and Quantum Physics" held at Kinki U- versity in Osaka, Jap...