The contributions collected in this volume complement volume 1 of this series, disclosing results of current developments in methodologies and applications of computational chemistry methods. The covered topics include fundamentals and applications of propagator calculations, as well as recent developments in the computationally efficient and accurate SAC-CI method, which allows calculation of various electronic states at the same time. SAC-CI studies of excited states of large molecular systems like porphyrins are reviewed, and its application to investigations of surface phenomena is...
The contributions collected in this volume complement volume 1 of this series, disclosing results of current developments in methodologies and applica...
Volume 3 of Computational Chemistry: Reviews of Current Trends adds well to the first two volumes of the series, presenting results of current developments in the methodologies and the applications of computational chemistry methods. The topics covered include fundamentals and applications of multireference Brillouin-Wigner coupled-cluster theory, as well as recent developments in quantum-chemical modeling of the interaction of solute and solvent.The book also features a review of recent developments and applications of the model-core-potential method. The application of computational methods...
Volume 3 of Computational Chemistry: Reviews of Current Trends adds well to the first two volumes of the series, presenting results of current develop...
There are strong indications that, in the 21st century, computational chemistry will be a prime research tool not only for the basic sciences but also for the life and materials sciences. Recent developments in nanotechnology allow us to detect a layer of single atoms. Researchers are able not only to image but also to manipulate molecules and atoms. It does not take much imagination to realize that before performing such a task on a real system it is much easier and faster to study models on computers. That is the aim of this volume — it provides up-to-date reviews which cover...
There are strong indications that, in the 21st century, computational chemistry will be a prime research tool not only for the basic sciences but also...
Vast progress in the area of computational chemistry has been achieved in the last decade of the 20th century. Theoretical methods such as quantum mechanics, molecular dynamics and statistical mechanics have been successfully used to characterize chemical systems and to design new materials, drugs and chemicals. With this in mind, the contributions to this volume were collected.
The contributions include predictions of the transport properties of molecular structures at the atomic level, which is of importance in solving crucial technological problems such as electromigration or temperature...
Vast progress in the area of computational chemistry has been achieved in the last decade of the 20th century. Theoretical methods such as quantum mec...
The gap between experimental objects and models for calculations in chemistry is being bridged. The size of experimental nano-objects is decreasing, while reliable calculations are feasible for larger and larger molecular systems. The results of these calculations for isolated molecules are becoming more relevant for experiments. However, there are still significant challenges for computational methods. This series of books presents reviews of current advances in computational methodologies and applications. Chapter 1 of this volume provides an overview of the theoretical and numerical...
The gap between experimental objects and models for calculations in chemistry is being bridged. The size of experimental nano-objects is decreasing, w...
Vast progress in the area of computational chemistry has been achieved in the last decade. Theoretical methods such as quantum mechanics, molecular dynamics and statistical mechanics have been successfully used to characterize chemical systems and to design new materials, drugs and chemicals. The reviews presented in this volume discuss the current advances in computational methodologies and their applications. The areas covered include materials science, nanotechnology, inorganic and biological systems. The major thrust of the book is to bring timely overviews of new findings and methods...
Vast progress in the area of computational chemistry has been achieved in the last decade. Theoretical methods such as quantum mechanics, molecular dy...
There have been important developments in the last decade: computers are faster and more powerful, code features are enhanced and more efficient, and larger molecules can be studied ? not only in vacuum but also in a solvent or in crystal. Researchers are using new techniques to study larger systems and obtain more accurate results. This is impetus for the development of more efficient methods based on the first-principle multi-level simulations appropriate for complex species. Among the cutting-edge methods and studies reviewed in this decennial volume of the series are the Density...
There have been important developments in the last decade: computers are faster and more powerful, code features are enhanced and more efficient, and ...