From the reviews: " the book contains a wealth of material essential to the researcher concerned with multiple integral variational problems and with elliptic partial differential equations. The book not only reports the researches of the author but also the contributions of his contemporaries in the same and related fields. The book undoubtedly will become a standard reference for researchers in these areas. The book is addressed mainly to mature mathematical analysts. However, any student of analysis will be greatly rewarded by a careful study of this book."
M. R....
From the reviews: " the book contains a wealth of material essential to the researcher concerned with multiple integral variational problems and wi...
AT-theory was introduced by A. Grothendieck in his formulation of the Riemann- Roch theorem (cf. Borel and Serre 2]). For each projective algebraic variety, Grothendieck constructed a group from the category of coherent algebraic sheaves, and showed that it had many nice properties. Atiyah and Hirzebruch 3] con- sidered a topological analog defined for any compact space X, a group K{X) constructed from the category of vector bundles on X. It is this ''topological J DEGREES-theory" that this book will study. Topological DEGREES-theory has become an important tool in topology. Using- theory,...
AT-theory was introduced by A. Grothendieck in his formulation of the Riemann- Roch theorem (cf. Borel and Serre 2]). For each projective algebraic v...
"Volumes III and IV complete L. Hormander's treatise on linear partial differential equations. They constitute the most complete and up-to-date account of this subject, by the author who has dominated it and made the most significant contributions in the last decades.....It is a superb book, which must be present in every mathematical library, and an indispensable tool for all - young and old - interested in the theory of partial differential operators." L. Boutet de Monvel in Bulletin of the American Mathematical Society, 1987
"This treatise is outstanding...
From the reviews:
"Volumes III and IV complete L. Hormander's treatise on linear partial differential equations. They constitute the most c...
The aim of the present monograph is to give a systematic exposition of the theory of algebraic surfaces emphasizing the interrelations between the various aspects of the theory: algebro-geometric, topological and transcendental. To achieve this aim, and still remain inside the limits of the allotted space, it was necessary to confine the exposition to topics which are absolutely fundamental. The present work therefore makes no claim to completeness, but it does, however, cover most of the central points of the theory. A presentation of the theory of surfaces, to be effective at all, must...
The aim of the present monograph is to give a systematic exposition of the theory of algebraic surfaces emphasizing the interrelations between the var...
In recent years new topological methods, especially the theory of sheaves founded by J. LERAY, have been applied successfully to algebraic geometry and to the theory of functions of several complex variables. H. CARTAN and J. -P. SERRE have shown how fundamental theorems on holomorphically complete manifolds (STEIN manifolds) can be for mulated in terms of sheaf theory. These theorems imply many facts of function theory because the domains of holomorphy are holomorphically complete. They can also be applied to algebraic geometry because the complement of a hyperplane section of an algebraic...
In recent years new topological methods, especially the theory of sheaves founded by J. LERAY, have been applied successfully to algebraic geometry an...
Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements....
Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Ba...