An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field.
After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass...
An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms
Drawing on the authors two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts.
The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula...
Drawing on the authors two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents...
Learn How to Properly Use the Latest Analytics Approaches in Your Organization
Computational Business Analytics presents tools and techniques for descriptive, predictive, and prescriptive analytics applicable across multiple domains. Through many examples and challenging case studies from a variety of fields, practitioners easily see the connections to their own problems and can then formulate their own solution strategies.
The book first covers core descriptive and inferential statistics for analytics. The author then enhances numerical...
Learn How to Properly Use the Latest Analytics Approaches in Your Organization
A new approach to distributed large-scale data mining, service-oriented knowledge discovery extracts useful knowledge from today s often unmanageable volumes of data by exploiting data mining and machine learning distributed models and techniques in service-oriented infrastructures. Service-Oriented Distributed Knowledge Discovery presents techniques, algorithms, and systems based on the service-oriented paradigm. Through detailed descriptions of real software systems, it shows how the techniques, models, and architectures can be implemented.
The book covers...
A new approach to distributed large-scale data mining, service-oriented knowledge discovery extracts useful knowledge from today s often unmanageab...
Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development presents novel methodologies for automatically processing these types of data to support rational decision making for sustainable development. Through numerous case studies and applications, it illustrates important data analysis methods, including...
Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorit...
Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that...
Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data minin...
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering:
Methods, describing key...
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communitie...
Comprehensive Coverage of the Entire Area of Classification Research on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data. This comprehensive book focuses on...
Comprehensive Coverage of the Entire Area of Classification Research on the problem of classification tends to be fragmented across su...
Focused on the mathematical foundations of social media analysis, Graph-Based Social Media Analysis provides a comprehensive introduction to the use of graph analysis in the study of social and digital media. It addresses an important scientific and technological challenge, namely the confluence of graph analysis and network theory with linear algebra, digital media, machine learning, big data analysis, and signal processing. Supplying an overview of graph-based social media analysis, the book provides readers with a clear understanding of social media structure. It...
Focused on the mathematical foundations of social media analysis, Graph-Based Social Media Analysis provides a comprehensive intro...
Data Science and Analytics with Python is designed for practitioners in data science and data analytics in both academic and business environments. The aim is to present the reader with the main concepts used in data science using tools developed in Python, such as SciKit-learn, Pandas, Numpy, and others. The use of Python is of particular interest, given its recent popularity in the data science community. The book can be used by seasoned programmers and newcomers alike.
The book is organized in a way that individual chapters are sufficiently independent from each other so...
Data Science and Analytics with Python is designed for practitioners in data science and data analytics in both academic and business environments....